{"title":"对陶瓷块体和表面阴离子空位缺陷结构的计算研究","authors":"","doi":"10.1016/j.cattod.2024.114946","DOIUrl":null,"url":null,"abstract":"<div><p>Ceria is an important technological material that finds wide application as an oxygen storage component in heterogeneous oxidation catalysis. In these applications the removal of lattice oxygen results in two reduced Ce<sup>3+</sup> centres whose location relative to the vacancy site has a profound influence on the vacancy formation energy. Here we present DFT calculations on the bulk and surface oxygen defect formation highlighting the distribution of structures that are thermally accessible in such a situation. We also demonstrate that the Ce<sup>3+</sup> locations influence the barrier to oxygen anion migration.</p></div>","PeriodicalId":264,"journal":{"name":"Catalysis Today","volume":null,"pages":null},"PeriodicalIF":5.2000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0920586124004401/pdfft?md5=ccdfa1b86ecfce477bb65578400e5296&pid=1-s2.0-S0920586124004401-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A computational study of the structure of anion vacancy defects in the bulk and on the surfaces of ceria\",\"authors\":\"\",\"doi\":\"10.1016/j.cattod.2024.114946\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Ceria is an important technological material that finds wide application as an oxygen storage component in heterogeneous oxidation catalysis. In these applications the removal of lattice oxygen results in two reduced Ce<sup>3+</sup> centres whose location relative to the vacancy site has a profound influence on the vacancy formation energy. Here we present DFT calculations on the bulk and surface oxygen defect formation highlighting the distribution of structures that are thermally accessible in such a situation. We also demonstrate that the Ce<sup>3+</sup> locations influence the barrier to oxygen anion migration.</p></div>\",\"PeriodicalId\":264,\"journal\":{\"name\":\"Catalysis Today\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0920586124004401/pdfft?md5=ccdfa1b86ecfce477bb65578400e5296&pid=1-s2.0-S0920586124004401-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catalysis Today\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0920586124004401\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Today","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0920586124004401","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
A computational study of the structure of anion vacancy defects in the bulk and on the surfaces of ceria
Ceria is an important technological material that finds wide application as an oxygen storage component in heterogeneous oxidation catalysis. In these applications the removal of lattice oxygen results in two reduced Ce3+ centres whose location relative to the vacancy site has a profound influence on the vacancy formation energy. Here we present DFT calculations on the bulk and surface oxygen defect formation highlighting the distribution of structures that are thermally accessible in such a situation. We also demonstrate that the Ce3+ locations influence the barrier to oxygen anion migration.
期刊介绍:
Catalysis Today focuses on the rapid publication of original invited papers devoted to currently important topics in catalysis and related subjects. The journal only publishes special issues (Proposing a Catalysis Today Special Issue), each of which is supervised by Guest Editors who recruit individual papers and oversee the peer review process. Catalysis Today offers researchers in the field of catalysis in-depth overviews of topical issues.
Both fundamental and applied aspects of catalysis are covered. Subjects such as catalysis of immobilized organometallic and biocatalytic systems are welcome. Subjects related to catalysis such as experimental techniques, adsorption, process technology, synthesis, in situ characterization, computational, theoretical modeling, imaging and others are included if there is a clear relationship to catalysis.