无{K1,3,Γ3}图中的汉密尔顿连接性闭包

Pub Date : 2024-07-17 DOI:10.1016/j.disc.2024.114154
Adam Kabela, Zdeněk Ryjáček, Mária Skyvová, Petr Vrána
{"title":"无{K1,3,Γ3}图中的汉密尔顿连接性闭包","authors":"Adam Kabela,&nbsp;Zdeněk Ryjáček,&nbsp;Mária Skyvová,&nbsp;Petr Vrána","doi":"10.1016/j.disc.2024.114154","DOIUrl":null,"url":null,"abstract":"<div><p>We introduce a closure technique for Hamilton-connectedness of <span><math><mo>{</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>3</mn></mrow></msub><mo>,</mo><msub><mrow><mi>Γ</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>}</mo></math></span>-free graphs, where <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span> is the graph obtained by joining two vertex-disjoint triangles with a path of length 3. The closure turns a claw-free graph into a line graph of a multigraph while preserving its (non)-Hamilton-connectedness. The most technical parts of the proof are computer-assisted.</p><p>The main application of the closure is given in a subsequent paper showing that every 3-connected <span><math><mo>{</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>3</mn></mrow></msub><mo>,</mo><msub><mrow><mi>Γ</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>}</mo></math></span>-free graph is Hamilton-connected, thus resolving one of the two last open cases in the characterization of pairs of connected forbidden subgraphs implying Hamilton-connectedness.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A closure for Hamilton-connectedness in {K1,3,Γ3}-free graphs\",\"authors\":\"Adam Kabela,&nbsp;Zdeněk Ryjáček,&nbsp;Mária Skyvová,&nbsp;Petr Vrána\",\"doi\":\"10.1016/j.disc.2024.114154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We introduce a closure technique for Hamilton-connectedness of <span><math><mo>{</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>3</mn></mrow></msub><mo>,</mo><msub><mrow><mi>Γ</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>}</mo></math></span>-free graphs, where <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span> is the graph obtained by joining two vertex-disjoint triangles with a path of length 3. The closure turns a claw-free graph into a line graph of a multigraph while preserving its (non)-Hamilton-connectedness. The most technical parts of the proof are computer-assisted.</p><p>The main application of the closure is given in a subsequent paper showing that every 3-connected <span><math><mo>{</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>3</mn></mrow></msub><mo>,</mo><msub><mrow><mi>Γ</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>}</mo></math></span>-free graph is Hamilton-connected, thus resolving one of the two last open cases in the characterization of pairs of connected forbidden subgraphs implying Hamilton-connectedness.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012365X24002851\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X24002851","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们介绍了{K1,3,Γ3}-无图的汉密尔顿连接性的闭合技术,其中Γ3是将两个顶点相交的三角形用一条长度为3的路径连接起来得到的图。闭合技术将无爪图转化为多图的线图,同时保留其(非)汉密尔顿连接性。闭包的主要应用在随后的一篇论文中,该论文证明了每一个 3 连接的 {K1,3,Γ3} 无爪图都是汉密尔顿连接的,从而解决了暗示汉密尔顿连接性的成对连接的禁止子图的表征中最后两个开放案例之一。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
A closure for Hamilton-connectedness in {K1,3,Γ3}-free graphs

We introduce a closure technique for Hamilton-connectedness of {K1,3,Γ3}-free graphs, where Γ3 is the graph obtained by joining two vertex-disjoint triangles with a path of length 3. The closure turns a claw-free graph into a line graph of a multigraph while preserving its (non)-Hamilton-connectedness. The most technical parts of the proof are computer-assisted.

The main application of the closure is given in a subsequent paper showing that every 3-connected {K1,3,Γ3}-free graph is Hamilton-connected, thus resolving one of the two last open cases in the characterization of pairs of connected forbidden subgraphs implying Hamilton-connectedness.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信