{"title":"AtDREB2G 参与拟南芥对低温胁迫和脱落酸处理的核黄素生物合成调控","authors":"Junya Namba , Miho Harada , Rui Shibata , Yuina Toda , Takanori Maruta , Takahiro Ishikawa , Shigeru Shigeoka , Kazuya Yoshimura , Takahisa Ogawa","doi":"10.1016/j.plantsci.2024.112196","DOIUrl":null,"url":null,"abstract":"<div><p>Riboflavin (RF) serves as a precursor to flavin mononucleotide and flavin adenine dinucleotide, which are crucial cofactors in various metabolic processes. Strict regulation of cellular flavin homeostasis is imperative, yet information regarding the factors governing this regulation remains largely elusive. In this study, we first examined the impact of external flavin treatment on the <em>Arabidopsis</em> transcriptome to identify novel regulators of cellular flavin levels. Our analysis revealed alterations in the expression of 49 putative transcription factors. Subsequent reverse genetic screening highlighted a member of the dehydration-responsive element binding (DREB) family, AtDREB2G, as a potential regulator of cellular flavin levels. Knockout mutants of <em>AtDREB2G</em> (<em>dreb2g</em>) exhibited reduced flavin levels and decreased expression of RF biosynthetic genes compared to wild-type plants. Conversely, conditional overexpression of <em>AtDREB2G</em> led to an increase in the expression of RF biosynthetic genes and elevated flavin levels. In wild-type plants, exposure to low temperatures and abscisic acid treatment stimulated enhanced flavin levels and upregulated the expression of RF biosynthetic genes, concomitant with the induction of <em>AtDREB2G</em>. Notably, these responses were significantly attenuated in <em>dreb2g</em> mutants. Our findings establish AtDREB2G is involved in the positive regulation of flavin biosynthesis in <em>Arabidopsis</em>, particularly under conditions of low temperature and abscisic acid treatment.</p></div>","PeriodicalId":20273,"journal":{"name":"Plant Science","volume":"347 ","pages":"Article 112196"},"PeriodicalIF":4.2000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AtDREB2G is involved in the regulation of riboflavin biosynthesis in response to low-temperature stress and abscisic acid treatment in Arabidopsis thaliana\",\"authors\":\"Junya Namba , Miho Harada , Rui Shibata , Yuina Toda , Takanori Maruta , Takahiro Ishikawa , Shigeru Shigeoka , Kazuya Yoshimura , Takahisa Ogawa\",\"doi\":\"10.1016/j.plantsci.2024.112196\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Riboflavin (RF) serves as a precursor to flavin mononucleotide and flavin adenine dinucleotide, which are crucial cofactors in various metabolic processes. Strict regulation of cellular flavin homeostasis is imperative, yet information regarding the factors governing this regulation remains largely elusive. In this study, we first examined the impact of external flavin treatment on the <em>Arabidopsis</em> transcriptome to identify novel regulators of cellular flavin levels. Our analysis revealed alterations in the expression of 49 putative transcription factors. Subsequent reverse genetic screening highlighted a member of the dehydration-responsive element binding (DREB) family, AtDREB2G, as a potential regulator of cellular flavin levels. Knockout mutants of <em>AtDREB2G</em> (<em>dreb2g</em>) exhibited reduced flavin levels and decreased expression of RF biosynthetic genes compared to wild-type plants. Conversely, conditional overexpression of <em>AtDREB2G</em> led to an increase in the expression of RF biosynthetic genes and elevated flavin levels. In wild-type plants, exposure to low temperatures and abscisic acid treatment stimulated enhanced flavin levels and upregulated the expression of RF biosynthetic genes, concomitant with the induction of <em>AtDREB2G</em>. Notably, these responses were significantly attenuated in <em>dreb2g</em> mutants. Our findings establish AtDREB2G is involved in the positive regulation of flavin biosynthesis in <em>Arabidopsis</em>, particularly under conditions of low temperature and abscisic acid treatment.</p></div>\",\"PeriodicalId\":20273,\"journal\":{\"name\":\"Plant Science\",\"volume\":\"347 \",\"pages\":\"Article 112196\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168945224002231\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Science","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168945224002231","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
AtDREB2G is involved in the regulation of riboflavin biosynthesis in response to low-temperature stress and abscisic acid treatment in Arabidopsis thaliana
Riboflavin (RF) serves as a precursor to flavin mononucleotide and flavin adenine dinucleotide, which are crucial cofactors in various metabolic processes. Strict regulation of cellular flavin homeostasis is imperative, yet information regarding the factors governing this regulation remains largely elusive. In this study, we first examined the impact of external flavin treatment on the Arabidopsis transcriptome to identify novel regulators of cellular flavin levels. Our analysis revealed alterations in the expression of 49 putative transcription factors. Subsequent reverse genetic screening highlighted a member of the dehydration-responsive element binding (DREB) family, AtDREB2G, as a potential regulator of cellular flavin levels. Knockout mutants of AtDREB2G (dreb2g) exhibited reduced flavin levels and decreased expression of RF biosynthetic genes compared to wild-type plants. Conversely, conditional overexpression of AtDREB2G led to an increase in the expression of RF biosynthetic genes and elevated flavin levels. In wild-type plants, exposure to low temperatures and abscisic acid treatment stimulated enhanced flavin levels and upregulated the expression of RF biosynthetic genes, concomitant with the induction of AtDREB2G. Notably, these responses were significantly attenuated in dreb2g mutants. Our findings establish AtDREB2G is involved in the positive regulation of flavin biosynthesis in Arabidopsis, particularly under conditions of low temperature and abscisic acid treatment.
期刊介绍:
Plant Science will publish in the minimum of time, research manuscripts as well as commissioned reviews and commentaries recommended by its referees in all areas of experimental plant biology with emphasis in the broad areas of genomics, proteomics, biochemistry (including enzymology), physiology, cell biology, development, genetics, functional plant breeding, systems biology and the interaction of plants with the environment.
Manuscripts for full consideration should be written concisely and essentially as a final report. The main criterion for publication is that the manuscript must contain original and significant insights that lead to a better understanding of fundamental plant biology. Papers centering on plant cell culture should be of interest to a wide audience and methods employed result in a substantial improvement over existing established techniques and approaches. Methods papers are welcome only when the technique(s) described is novel or provides a major advancement of established protocols.