来自非线性 Vlasov-Fokker-Planck 方程的不可压缩 Navier-Stokes 限值

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
{"title":"来自非线性 Vlasov-Fokker-Planck 方程的不可压缩 Navier-Stokes 限值","authors":"","doi":"10.1016/j.aml.2024.109214","DOIUrl":null,"url":null,"abstract":"<div><p>The aim of this paper is to justify the rigorous derivation of the incompressible Navier–Stokes equations from the nonlinear Vlasov–Fokker–Planck (VFP) equation with a constant temperature. Under the incompressible Navier–Stokes scaling, we first establish the global existence of regular solutions to the rescaled nonlinear VFP equation near the Maxwellian, obtaining some uniform bound estimates. We then show the strong convergence of solution to the nonlinear VFP equation towards the incompressible Navier–Stokes system.</p></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Incompressible Navier–Stokes limit from nonlinear Vlasov–Fokker–Planck equation\",\"authors\":\"\",\"doi\":\"10.1016/j.aml.2024.109214\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The aim of this paper is to justify the rigorous derivation of the incompressible Navier–Stokes equations from the nonlinear Vlasov–Fokker–Planck (VFP) equation with a constant temperature. Under the incompressible Navier–Stokes scaling, we first establish the global existence of regular solutions to the rescaled nonlinear VFP equation near the Maxwellian, obtaining some uniform bound estimates. We then show the strong convergence of solution to the nonlinear VFP equation towards the incompressible Navier–Stokes system.</p></div>\",\"PeriodicalId\":55497,\"journal\":{\"name\":\"Applied Mathematics Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics Letters\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0893965924002349\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893965924002349","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文旨在证明从恒温非线性弗拉索夫-福克-普朗克(VFP)方程严格推导出不可压缩纳维-斯托克斯方程的合理性。在不可压缩纳维-斯托克斯缩放条件下,我们首先确定了重缩放非线性 VFP 方程在 Maxwellian 附近正则解的全局存在性,得到了一些均匀约束估计值。然后,我们证明了非线性 VFP 方程的解向不可压缩 Navier-Stokes 系统的强收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Incompressible Navier–Stokes limit from nonlinear Vlasov–Fokker–Planck equation

The aim of this paper is to justify the rigorous derivation of the incompressible Navier–Stokes equations from the nonlinear Vlasov–Fokker–Planck (VFP) equation with a constant temperature. Under the incompressible Navier–Stokes scaling, we first establish the global existence of regular solutions to the rescaled nonlinear VFP equation near the Maxwellian, obtaining some uniform bound estimates. We then show the strong convergence of solution to the nonlinear VFP equation towards the incompressible Navier–Stokes system.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Mathematics Letters
Applied Mathematics Letters 数学-应用数学
CiteScore
7.70
自引率
5.40%
发文量
347
审稿时长
10 days
期刊介绍: The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信