覆膜和打埂对雨水灌溉马铃薯田中一氧化二氮排放、相关功能基因和微生物群落的影响

Liwei Wang , Jingjie Miao , Yubo Meng , Naijia Wang , Kai Zhang , Kangjun Guo , Yue Zhang , Jun Zhang , Chen Feng , Rajesh Kumar Soothar , Jiaxin Zhang , Xining Gao , Cheng Wang
{"title":"覆膜和打埂对雨水灌溉马铃薯田中一氧化二氮排放、相关功能基因和微生物群落的影响","authors":"Liwei Wang ,&nbsp;Jingjie Miao ,&nbsp;Yubo Meng ,&nbsp;Naijia Wang ,&nbsp;Kai Zhang ,&nbsp;Kangjun Guo ,&nbsp;Yue Zhang ,&nbsp;Jun Zhang ,&nbsp;Chen Feng ,&nbsp;Rajesh Kumar Soothar ,&nbsp;Jiaxin Zhang ,&nbsp;Xining Gao ,&nbsp;Cheng Wang","doi":"10.1016/j.csag.2024.100010","DOIUrl":null,"url":null,"abstract":"<div><p>Rain-fed potato (<em>Solanum tuberosum</em>) fields in drylands significantly contribute to nitrous oxide (N<sub>2</sub>O) emissions, making them an important focus of agricultural greenhouse gas research. Film mulching and ridging are key agricultural methods in potato cultivation. Investigating the impact of these methods on N<sub>2</sub>O emissions, nitrifying/denitrifying functional genes, and microbial communities can provide a theoretical basis for soil emission reduction and more sustainable dryland agriculture. We examine the effects of flat tillage with mulching, ridge tillage with mulching, flat tillage without mulching, and ridge tillage without mulching, on potato fields under natural rainfall conditions in Wuchuan County, China. N<sub>2</sub>O emission fluxes were monitored using a static (dark) chamber and gas chromatography. Real-time quantitative PCR (q-PCR) was used to quantify abundances of nitrifying and denitrifying bacteria related to N<sub>2</sub>O emissions at various potato-growth stages. Illumina high-throughput sequencing was used to investigate microbial community structure by targeting 16S rRNA genes; related soil elements (soil temperatures and moisture) are analyzed. Mulching and ridging indirectly influence N<sub>2</sub>O emissions, nitrifying/denitrifying functional gene copy numbers, and microbial community structure by altering soil temperature and moisture. Cumulative N<sub>2</sub>O emissions and emission intensity were both consistently higher in ridge tillage with mulching during the potato-growing period. Ammonia-oxidizing archaea are the main microorganisms that control N<sub>2</sub>O emissions, with nitrification-coupled denitrification also being an important mechanism contributing to high N<sub>2</sub>O emissions during soil dry–wet cycles. Increased soil temperature and moisture elevated N<sub>2</sub>O emissions and functional gene copy numbers. The combination of mulching and ridging effectively uses the characteristics of both practices, making <em>Nitrospira</em> the dominant genus, and significantly increases N<sub>2</sub>O emissions.</p></div>","PeriodicalId":100262,"journal":{"name":"Climate Smart Agriculture","volume":"1 1","pages":"Article 100010"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2950409024000108/pdfft?md5=186578f057fa786ea8bf7e8a742566e6&pid=1-s2.0-S2950409024000108-main.pdf","citationCount":"0","resultStr":"{\"title\":\"The impacts of film mulching and ridging on N2O emissions, relevant functional genes, and microbial communities in rain-fed potato fields\",\"authors\":\"Liwei Wang ,&nbsp;Jingjie Miao ,&nbsp;Yubo Meng ,&nbsp;Naijia Wang ,&nbsp;Kai Zhang ,&nbsp;Kangjun Guo ,&nbsp;Yue Zhang ,&nbsp;Jun Zhang ,&nbsp;Chen Feng ,&nbsp;Rajesh Kumar Soothar ,&nbsp;Jiaxin Zhang ,&nbsp;Xining Gao ,&nbsp;Cheng Wang\",\"doi\":\"10.1016/j.csag.2024.100010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Rain-fed potato (<em>Solanum tuberosum</em>) fields in drylands significantly contribute to nitrous oxide (N<sub>2</sub>O) emissions, making them an important focus of agricultural greenhouse gas research. Film mulching and ridging are key agricultural methods in potato cultivation. Investigating the impact of these methods on N<sub>2</sub>O emissions, nitrifying/denitrifying functional genes, and microbial communities can provide a theoretical basis for soil emission reduction and more sustainable dryland agriculture. We examine the effects of flat tillage with mulching, ridge tillage with mulching, flat tillage without mulching, and ridge tillage without mulching, on potato fields under natural rainfall conditions in Wuchuan County, China. N<sub>2</sub>O emission fluxes were monitored using a static (dark) chamber and gas chromatography. Real-time quantitative PCR (q-PCR) was used to quantify abundances of nitrifying and denitrifying bacteria related to N<sub>2</sub>O emissions at various potato-growth stages. Illumina high-throughput sequencing was used to investigate microbial community structure by targeting 16S rRNA genes; related soil elements (soil temperatures and moisture) are analyzed. Mulching and ridging indirectly influence N<sub>2</sub>O emissions, nitrifying/denitrifying functional gene copy numbers, and microbial community structure by altering soil temperature and moisture. Cumulative N<sub>2</sub>O emissions and emission intensity were both consistently higher in ridge tillage with mulching during the potato-growing period. Ammonia-oxidizing archaea are the main microorganisms that control N<sub>2</sub>O emissions, with nitrification-coupled denitrification also being an important mechanism contributing to high N<sub>2</sub>O emissions during soil dry–wet cycles. Increased soil temperature and moisture elevated N<sub>2</sub>O emissions and functional gene copy numbers. The combination of mulching and ridging effectively uses the characteristics of both practices, making <em>Nitrospira</em> the dominant genus, and significantly increases N<sub>2</sub>O emissions.</p></div>\",\"PeriodicalId\":100262,\"journal\":{\"name\":\"Climate Smart Agriculture\",\"volume\":\"1 1\",\"pages\":\"Article 100010\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2950409024000108/pdfft?md5=186578f057fa786ea8bf7e8a742566e6&pid=1-s2.0-S2950409024000108-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Climate Smart Agriculture\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2950409024000108\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Climate Smart Agriculture","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2950409024000108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

旱地的雨水灌溉马铃薯(Solanum tuberosum)田极大地增加了一氧化二氮(N2O)的排放量,使其成为农业温室气体研究的一个重要焦点。覆膜和打埂是马铃薯种植的主要农业方法。研究这些方法对一氧化二氮排放、硝化/反硝化功能基因和微生物群落的影响,可为土壤减排和更可持续的旱地农业提供理论依据。我们研究了在中国武川县自然降雨条件下,平耕加地膜覆盖、脊耕加地膜覆盖、平耕不加地膜覆盖和脊耕不加地膜覆盖对马铃薯田的影响。采用静态(暗)室和气相色谱仪监测 N2O 排放通量。实时定量 PCR(q-PCR)用于定量分析马铃薯不同生长阶段与 N2O 排放相关的硝化细菌和反硝化细菌的丰度。利用 Illumina 高通量测序技术,以 16S rRNA 基因为目标研究微生物群落结构;分析相关土壤元素(土壤温度和湿度)。地膜覆盖和田埂通过改变土壤温度和湿度间接影响了 N2O 排放、硝化/反硝化功能基因拷贝数和微生物群落结构。在马铃薯生长期间,覆土耕作和起垄耕作的累积 N2O 排放量和排放强度都持续较高。氨氧化古细菌是控制 N2O 排放的主要微生物,硝化耦合反硝化也是导致土壤干湿循环期间 N2O 高排放的重要机制。土壤温度和湿度的增加提高了 N2O 排放量和功能基因拷贝数。地膜覆盖与田埂覆盖相结合,有效利用了这两种方法的特点,使硝化细菌成为优势菌属,并显著增加了 N2O 排放量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The impacts of film mulching and ridging on N2O emissions, relevant functional genes, and microbial communities in rain-fed potato fields

The impacts of film mulching and ridging on N2O emissions, relevant functional genes, and microbial communities in rain-fed potato fields

Rain-fed potato (Solanum tuberosum) fields in drylands significantly contribute to nitrous oxide (N2O) emissions, making them an important focus of agricultural greenhouse gas research. Film mulching and ridging are key agricultural methods in potato cultivation. Investigating the impact of these methods on N2O emissions, nitrifying/denitrifying functional genes, and microbial communities can provide a theoretical basis for soil emission reduction and more sustainable dryland agriculture. We examine the effects of flat tillage with mulching, ridge tillage with mulching, flat tillage without mulching, and ridge tillage without mulching, on potato fields under natural rainfall conditions in Wuchuan County, China. N2O emission fluxes were monitored using a static (dark) chamber and gas chromatography. Real-time quantitative PCR (q-PCR) was used to quantify abundances of nitrifying and denitrifying bacteria related to N2O emissions at various potato-growth stages. Illumina high-throughput sequencing was used to investigate microbial community structure by targeting 16S rRNA genes; related soil elements (soil temperatures and moisture) are analyzed. Mulching and ridging indirectly influence N2O emissions, nitrifying/denitrifying functional gene copy numbers, and microbial community structure by altering soil temperature and moisture. Cumulative N2O emissions and emission intensity were both consistently higher in ridge tillage with mulching during the potato-growing period. Ammonia-oxidizing archaea are the main microorganisms that control N2O emissions, with nitrification-coupled denitrification also being an important mechanism contributing to high N2O emissions during soil dry–wet cycles. Increased soil temperature and moisture elevated N2O emissions and functional gene copy numbers. The combination of mulching and ridging effectively uses the characteristics of both practices, making Nitrospira the dominant genus, and significantly increases N2O emissions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信