超导磁通变换放大器热调制下淬火和恢复状态的高频转换特性研究

IF 1.8 3区 工程技术 Q3 PHYSICS, APPLIED
Guilong Li, Qiaochu Ding, Shiyi Zhang, Qingfa Du, Mengchun Pan, Peisen Li, Junping Peng, Weicheng Qiu, Jiafei Hu, Yueguo Hu
{"title":"超导磁通变换放大器热调制下淬火和恢复状态的高频转换特性研究","authors":"Guilong Li,&nbsp;Qiaochu Ding,&nbsp;Shiyi Zhang,&nbsp;Qingfa Du,&nbsp;Mengchun Pan,&nbsp;Peisen Li,&nbsp;Junping Peng,&nbsp;Weicheng Qiu,&nbsp;Jiafei Hu,&nbsp;Yueguo Hu","doi":"10.1016/j.cryogenics.2024.103896","DOIUrl":null,"url":null,"abstract":"<div><p>To tackle the challenge posed by 1/f noise which significantly hinders the practical application of superconductor/tunnel magnetoresistance (TMR) composite magnetic sensors in low-frequency detection, this paper proposes a magnetic field thermal modulation method specifically tailored for the superconductor/TMR composite sensor. The method employs alternating joule heating via a resistance wire to induce partial quenching and recovery states conversion in the superconducting flux transformation amplifier (SFTA). Firstly, a thermo-electric–magnetic comprehensive finite element simulation model was developed to obtain the temperature and magnetic field distributions during the quenching and recovery state conversion process, and then to realize the size optimization of the thermal modulated structure. Final experimental tests conducted in the liquid nitrogen environment demonstrated a high modulation frequency of 5 kHz was achieved. Meanwhile, the interlayer capacitor-coupling effect was introduced to explain the phenomenon of resistance deviation from zero for the thermal modulated superconducting constriction under the higher modulation frequency. The breakthrough in this article holds promise for the low-frequency application of superconductor/TMR composite sensors.</p></div>","PeriodicalId":10812,"journal":{"name":"Cryogenics","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on the high-frequency conversion characteristics of quench and recovery states under thermal modulation of a superconducting flux transformation amplifier\",\"authors\":\"Guilong Li,&nbsp;Qiaochu Ding,&nbsp;Shiyi Zhang,&nbsp;Qingfa Du,&nbsp;Mengchun Pan,&nbsp;Peisen Li,&nbsp;Junping Peng,&nbsp;Weicheng Qiu,&nbsp;Jiafei Hu,&nbsp;Yueguo Hu\",\"doi\":\"10.1016/j.cryogenics.2024.103896\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>To tackle the challenge posed by 1/f noise which significantly hinders the practical application of superconductor/tunnel magnetoresistance (TMR) composite magnetic sensors in low-frequency detection, this paper proposes a magnetic field thermal modulation method specifically tailored for the superconductor/TMR composite sensor. The method employs alternating joule heating via a resistance wire to induce partial quenching and recovery states conversion in the superconducting flux transformation amplifier (SFTA). Firstly, a thermo-electric–magnetic comprehensive finite element simulation model was developed to obtain the temperature and magnetic field distributions during the quenching and recovery state conversion process, and then to realize the size optimization of the thermal modulated structure. Final experimental tests conducted in the liquid nitrogen environment demonstrated a high modulation frequency of 5 kHz was achieved. Meanwhile, the interlayer capacitor-coupling effect was introduced to explain the phenomenon of resistance deviation from zero for the thermal modulated superconducting constriction under the higher modulation frequency. The breakthrough in this article holds promise for the low-frequency application of superconductor/TMR composite sensors.</p></div>\",\"PeriodicalId\":10812,\"journal\":{\"name\":\"Cryogenics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cryogenics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0011227524001164\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cryogenics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0011227524001164","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

1/f 噪声严重阻碍了超导体/隧道磁阻(TMR)复合磁传感器在低频探测中的实际应用,为了解决这一难题,本文提出了一种专门针对超导体/TMR 复合传感器的磁场热调制方法。该方法通过电阻丝交替焦耳加热,诱导超导磁通变换放大器(SFTA)中的部分淬火和恢复状态转换。首先,建立了热-电-磁综合有限元仿真模型,以获得淬火和恢复状态转换过程中的温度和磁场分布,进而实现热调制结构的尺寸优化。在液氮环境下进行的最终实验测试表明,调制频率高达 5 kHz。同时,引入了层间电容耦合效应,解释了热调制超导收缩在较高调制频率下电阻偏离零的现象。本文的突破为超导/TMR 复合传感器的低频应用带来了希望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Study on the high-frequency conversion characteristics of quench and recovery states under thermal modulation of a superconducting flux transformation amplifier

To tackle the challenge posed by 1/f noise which significantly hinders the practical application of superconductor/tunnel magnetoresistance (TMR) composite magnetic sensors in low-frequency detection, this paper proposes a magnetic field thermal modulation method specifically tailored for the superconductor/TMR composite sensor. The method employs alternating joule heating via a resistance wire to induce partial quenching and recovery states conversion in the superconducting flux transformation amplifier (SFTA). Firstly, a thermo-electric–magnetic comprehensive finite element simulation model was developed to obtain the temperature and magnetic field distributions during the quenching and recovery state conversion process, and then to realize the size optimization of the thermal modulated structure. Final experimental tests conducted in the liquid nitrogen environment demonstrated a high modulation frequency of 5 kHz was achieved. Meanwhile, the interlayer capacitor-coupling effect was introduced to explain the phenomenon of resistance deviation from zero for the thermal modulated superconducting constriction under the higher modulation frequency. The breakthrough in this article holds promise for the low-frequency application of superconductor/TMR composite sensors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cryogenics
Cryogenics 物理-热力学
CiteScore
3.80
自引率
9.50%
发文量
0
审稿时长
2.1 months
期刊介绍: Cryogenics is the world''s leading journal focusing on all aspects of cryoengineering and cryogenics. Papers published in Cryogenics cover a wide variety of subjects in low temperature engineering and research. Among the areas covered are: - Applications of superconductivity: magnets, electronics, devices - Superconductors and their properties - Properties of materials: metals, alloys, composites, polymers, insulations - New applications of cryogenic technology to processes, devices, machinery - Refrigeration and liquefaction technology - Thermodynamics - Fluid properties and fluid mechanics - Heat transfer - Thermometry and measurement science - Cryogenics in medicine - Cryoelectronics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信