奇异矩阵铅笔的一类随机数值方法的特征值条件数分析。

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Accounts of Chemical Research Pub Date : 2024-01-01 Epub Date: 2024-07-15 DOI:10.1007/s10543-024-01033-w
Daniel Kressner, Bor Plestenjak
{"title":"奇异矩阵铅笔的一类随机数值方法的特征值条件数分析。","authors":"Daniel Kressner, Bor Plestenjak","doi":"10.1007/s10543-024-01033-w","DOIUrl":null,"url":null,"abstract":"<p><p>The numerical solution of the generalized eigenvalue problem for a singular matrix pencil is challenging due to the discontinuity of its eigenvalues. Classically, such problems are addressed by first extracting the regular part through the staircase form and then applying a standard solver, such as the QZ algorithm, to that regular part. Recently, several novel approaches have been proposed to transform the singular pencil into a regular pencil by relatively simple randomized modifications. In this work, we analyze three such methods by Hochstenbach, Mehl, and Plestenjak that modify, project, or augment the pencil using random matrices. All three methods rely on the normal rank and do not alter the finite eigenvalues of the original pencil. We show that the eigenvalue condition numbers of the transformed pencils are unlikely to be much larger than the <math><mi>δ</mi></math> -weak eigenvalue condition numbers, introduced by Lotz and Noferini, of the original pencil. This not only indicates favorable numerical stability but also reconfirms that these condition numbers are a reliable criterion for detecting simple finite eigenvalues. We also provide evidence that, from a numerical stability perspective, the use of complex instead of real random matrices is preferable even for real singular matrix pencils and real eigenvalues. As a side result, we provide sharp left tail bounds for a product of two independent random variables distributed with the generalized beta distribution of the first kind or Kumaraswamy distribution.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11249782/pdf/","citationCount":"0","resultStr":"{\"title\":\"Analysis of eigenvalue condition numbers for a class of randomized numerical methods for singular matrix pencils.\",\"authors\":\"Daniel Kressner, Bor Plestenjak\",\"doi\":\"10.1007/s10543-024-01033-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The numerical solution of the generalized eigenvalue problem for a singular matrix pencil is challenging due to the discontinuity of its eigenvalues. Classically, such problems are addressed by first extracting the regular part through the staircase form and then applying a standard solver, such as the QZ algorithm, to that regular part. Recently, several novel approaches have been proposed to transform the singular pencil into a regular pencil by relatively simple randomized modifications. In this work, we analyze three such methods by Hochstenbach, Mehl, and Plestenjak that modify, project, or augment the pencil using random matrices. All three methods rely on the normal rank and do not alter the finite eigenvalues of the original pencil. We show that the eigenvalue condition numbers of the transformed pencils are unlikely to be much larger than the <math><mi>δ</mi></math> -weak eigenvalue condition numbers, introduced by Lotz and Noferini, of the original pencil. This not only indicates favorable numerical stability but also reconfirms that these condition numbers are a reliable criterion for detecting simple finite eigenvalues. We also provide evidence that, from a numerical stability perspective, the use of complex instead of real random matrices is preferable even for real singular matrix pencils and real eigenvalues. As a side result, we provide sharp left tail bounds for a product of two independent random variables distributed with the generalized beta distribution of the first kind or Kumaraswamy distribution.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11249782/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10543-024-01033-w\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10543-024-01033-w","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/15 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

由于奇异矩阵铅笔的特征值不连续,因此其广义特征值问题的数值求解具有挑战性。通常,解决这类问题的方法是先通过阶梯形式提取正则部分,然后对正则部分应用标准求解器,如 QZ 算法。最近,人们提出了几种新方法,通过相对简单的随机修改将奇异铅笔转化为正则铅笔。在这项研究中,我们分析了 Hochstenbach、Mehl 和 Plestenjak 使用随机矩阵修改、投影或增强铅笔的三种方法。这三种方法都依赖于正常秩,不会改变原始铅笔的有限特征值。我们的研究表明,变换后的铅笔的特征值条件数不可能比 Lotz 和 Noferini 引入的原始铅笔的 δ 弱特征值条件数大很多。这不仅表明了良好的数值稳定性,而且再次证实了这些条件数是检测简单有限特征值的可靠标准。我们还提供证据表明,从数值稳定性的角度来看,即使对于实奇异矩阵铅笔和实特征值,使用复随机矩阵而非实随机矩阵也是可取的。作为一个附带结果,我们为两个独立随机变量的乘积提供了尖锐的左尾边界,这两个随机变量的分布是广义贝塔第一种分布或库马拉斯瓦米分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Analysis of eigenvalue condition numbers for a class of randomized numerical methods for singular matrix pencils.

Analysis of eigenvalue condition numbers for a class of randomized numerical methods for singular matrix pencils.

The numerical solution of the generalized eigenvalue problem for a singular matrix pencil is challenging due to the discontinuity of its eigenvalues. Classically, such problems are addressed by first extracting the regular part through the staircase form and then applying a standard solver, such as the QZ algorithm, to that regular part. Recently, several novel approaches have been proposed to transform the singular pencil into a regular pencil by relatively simple randomized modifications. In this work, we analyze three such methods by Hochstenbach, Mehl, and Plestenjak that modify, project, or augment the pencil using random matrices. All three methods rely on the normal rank and do not alter the finite eigenvalues of the original pencil. We show that the eigenvalue condition numbers of the transformed pencils are unlikely to be much larger than the δ -weak eigenvalue condition numbers, introduced by Lotz and Noferini, of the original pencil. This not only indicates favorable numerical stability but also reconfirms that these condition numbers are a reliable criterion for detecting simple finite eigenvalues. We also provide evidence that, from a numerical stability perspective, the use of complex instead of real random matrices is preferable even for real singular matrix pencils and real eigenvalues. As a side result, we provide sharp left tail bounds for a product of two independent random variables distributed with the generalized beta distribution of the first kind or Kumaraswamy distribution.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信