Juhyun Kim, Eun Jin Jeon, Minji Jun, Da-Som Lee, Seong-Jin Lee, Seungmo Lim
{"title":"在紫锥菊种子中发现的两种类墓病毒的完整基因组序列。","authors":"Juhyun Kim, Eun Jin Jeon, Minji Jun, Da-Som Lee, Seong-Jin Lee, Seungmo Lim","doi":"10.1007/s11262-024-02092-5","DOIUrl":null,"url":null,"abstract":"<p><p>Echinacea is an herbaceous plant originating from North America that is cultivated for gardening and landscaping because of its showy flowers. Using high-throughput sequencing, we identified two viral contigs from echinacea seeds that were related to the family Tombusviridae. These two viruses were similar to oat chlorotic stunt virus (OCSV) and other unassigned tombusviruses; therefore, we tentatively named them Echinacea-associated tombusviruses 1 and 2 (EaTV1 and EaTV2, respectively). The EaTVs represent putative readthrough sites and have no poly(A) tails, aligning with the common features of family Tombusviridae. The EaTVs are included in a monophyletic group of OCSV and several unassigned tombusviruses. Because OCSV is the only member of Avenavirus to date, EaTVs are tentative members of Avenavirus, or they are close sister species to OCSV with several unassigned tombusviruses. RNA-dependent RNA polymerases and coat proteins were well conserved among EaTVs and unassigned tombusviruses; however, their similarities were not correlated, implying divergent and complex evolution.</p>","PeriodicalId":51212,"journal":{"name":"Virus Genes","volume":" ","pages":"572-575"},"PeriodicalIF":1.9000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Complete genome sequences of two tombusvirus-like viruses identified in Echinacea purpurea seeds.\",\"authors\":\"Juhyun Kim, Eun Jin Jeon, Minji Jun, Da-Som Lee, Seong-Jin Lee, Seungmo Lim\",\"doi\":\"10.1007/s11262-024-02092-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Echinacea is an herbaceous plant originating from North America that is cultivated for gardening and landscaping because of its showy flowers. Using high-throughput sequencing, we identified two viral contigs from echinacea seeds that were related to the family Tombusviridae. These two viruses were similar to oat chlorotic stunt virus (OCSV) and other unassigned tombusviruses; therefore, we tentatively named them Echinacea-associated tombusviruses 1 and 2 (EaTV1 and EaTV2, respectively). The EaTVs represent putative readthrough sites and have no poly(A) tails, aligning with the common features of family Tombusviridae. The EaTVs are included in a monophyletic group of OCSV and several unassigned tombusviruses. Because OCSV is the only member of Avenavirus to date, EaTVs are tentative members of Avenavirus, or they are close sister species to OCSV with several unassigned tombusviruses. RNA-dependent RNA polymerases and coat proteins were well conserved among EaTVs and unassigned tombusviruses; however, their similarities were not correlated, implying divergent and complex evolution.</p>\",\"PeriodicalId\":51212,\"journal\":{\"name\":\"Virus Genes\",\"volume\":\" \",\"pages\":\"572-575\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Virus Genes\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s11262-024-02092-5\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Virus Genes","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11262-024-02092-5","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/18 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Complete genome sequences of two tombusvirus-like viruses identified in Echinacea purpurea seeds.
Echinacea is an herbaceous plant originating from North America that is cultivated for gardening and landscaping because of its showy flowers. Using high-throughput sequencing, we identified two viral contigs from echinacea seeds that were related to the family Tombusviridae. These two viruses were similar to oat chlorotic stunt virus (OCSV) and other unassigned tombusviruses; therefore, we tentatively named them Echinacea-associated tombusviruses 1 and 2 (EaTV1 and EaTV2, respectively). The EaTVs represent putative readthrough sites and have no poly(A) tails, aligning with the common features of family Tombusviridae. The EaTVs are included in a monophyletic group of OCSV and several unassigned tombusviruses. Because OCSV is the only member of Avenavirus to date, EaTVs are tentative members of Avenavirus, or they are close sister species to OCSV with several unassigned tombusviruses. RNA-dependent RNA polymerases and coat proteins were well conserved among EaTVs and unassigned tombusviruses; however, their similarities were not correlated, implying divergent and complex evolution.
期刊介绍:
Viruses are convenient models for the elucidation of life processes. The study of viruses is again on the cutting edge of biological sciences: systems biology, genomics, proteomics, metagenomics, using the newest most powerful tools.
Huge amounts of new details on virus interactions with the cell, other pathogens and the hosts – animal (including human), insect, fungal, plant, bacterial, and archaeal - and their role in infection and disease are forthcoming in perplexing details requiring analysis and comments.
Virus Genes is dedicated to the publication of studies on the structure and function of viruses and their genes, the molecular and systems interactions with the host and all applications derived thereof, providing a forum for the analysis of data and discussion of its implications, and the development of new hypotheses.