Sara Imtiaz, Saba Sohail, Fakhar Ud Din, Zakir Ali, Sibgha Batool, Maimoona Malik, Asif Nawaz, Ali H Alamri, Ahmed A Lahiq, Shaker T Alsharif, Abdullah Asiri
{"title":"用于肿瘤靶向的来曲唑负载纳米转运体凝胶的配方和统计优化。","authors":"Sara Imtiaz, Saba Sohail, Fakhar Ud Din, Zakir Ali, Sibgha Batool, Maimoona Malik, Asif Nawaz, Ali H Alamri, Ahmed A Lahiq, Shaker T Alsharif, Abdullah Asiri","doi":"10.1080/10837450.2024.2382437","DOIUrl":null,"url":null,"abstract":"<p><p>Letrozole (LTZ) is used as first-line treatment for hormone-positive breast cancer (BC) in postmenopausal women. However, its poor aqueous solubility and permeability have reduced its clinical efficacy. Herein, we developed LTZ-nanotransferosomes (LTZ-NT) to address above mentioned issues. The LTZ-NT were optimized statistically using Design Expert<sup>®</sup> followed by their characterization <i>via</i> dynamic light scattering (DLS), Transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and Differential scanning calorimetry (DSC). The optimized LTZ-NT was incorporated into 1% chitosan-gel to develop LTZ-NTG. Moreover, <i>in vitro</i> drug release and <i>ex vivo</i> permeation of LTZ-NTG were performed and compared with LTZ-dispersion and LTZ-NT. Additionally, skin irritability and histopathology of LTZ-NTG were investigated. Furthermore, <i>in vitro</i> antitumor study of LTZ-NTG was investigated in BC cell lines. The optimized LTZ-NT showed suitable zeta potential (30.4 mV), spherical size (162.5 nm), and excellent entrapment efficiency (88.04%). Moreover, LTZ-NT exhibited suitable thermal behavior and no interactions among its excipients. In addition, LTZ-NTG had an optimal pH (5.6) and a suitable viscosity. A meaningfully sustained release and improved permeation of LTZ was observed from LTZ-NTG. Additionally, LTZ-NTG showed significantly enhanced cell death of MCF-7 and MCC-7 cells. It can be concluded that LTZ-NTG has the potential to deliver chemotherapeutic agents for possible treatment of BC.</p>","PeriodicalId":20004,"journal":{"name":"Pharmaceutical Development and Technology","volume":" ","pages":"703-718"},"PeriodicalIF":2.6000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Formulation and statistical optimization of letrozole loaded nanotransferosomal gel for tumor targeting.\",\"authors\":\"Sara Imtiaz, Saba Sohail, Fakhar Ud Din, Zakir Ali, Sibgha Batool, Maimoona Malik, Asif Nawaz, Ali H Alamri, Ahmed A Lahiq, Shaker T Alsharif, Abdullah Asiri\",\"doi\":\"10.1080/10837450.2024.2382437\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Letrozole (LTZ) is used as first-line treatment for hormone-positive breast cancer (BC) in postmenopausal women. However, its poor aqueous solubility and permeability have reduced its clinical efficacy. Herein, we developed LTZ-nanotransferosomes (LTZ-NT) to address above mentioned issues. The LTZ-NT were optimized statistically using Design Expert<sup>®</sup> followed by their characterization <i>via</i> dynamic light scattering (DLS), Transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and Differential scanning calorimetry (DSC). The optimized LTZ-NT was incorporated into 1% chitosan-gel to develop LTZ-NTG. Moreover, <i>in vitro</i> drug release and <i>ex vivo</i> permeation of LTZ-NTG were performed and compared with LTZ-dispersion and LTZ-NT. Additionally, skin irritability and histopathology of LTZ-NTG were investigated. Furthermore, <i>in vitro</i> antitumor study of LTZ-NTG was investigated in BC cell lines. The optimized LTZ-NT showed suitable zeta potential (30.4 mV), spherical size (162.5 nm), and excellent entrapment efficiency (88.04%). Moreover, LTZ-NT exhibited suitable thermal behavior and no interactions among its excipients. In addition, LTZ-NTG had an optimal pH (5.6) and a suitable viscosity. A meaningfully sustained release and improved permeation of LTZ was observed from LTZ-NTG. Additionally, LTZ-NTG showed significantly enhanced cell death of MCF-7 and MCC-7 cells. It can be concluded that LTZ-NTG has the potential to deliver chemotherapeutic agents for possible treatment of BC.</p>\",\"PeriodicalId\":20004,\"journal\":{\"name\":\"Pharmaceutical Development and Technology\",\"volume\":\" \",\"pages\":\"703-718\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmaceutical Development and Technology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/10837450.2024.2382437\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Development and Technology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10837450.2024.2382437","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/26 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Formulation and statistical optimization of letrozole loaded nanotransferosomal gel for tumor targeting.
Letrozole (LTZ) is used as first-line treatment for hormone-positive breast cancer (BC) in postmenopausal women. However, its poor aqueous solubility and permeability have reduced its clinical efficacy. Herein, we developed LTZ-nanotransferosomes (LTZ-NT) to address above mentioned issues. The LTZ-NT were optimized statistically using Design Expert® followed by their characterization via dynamic light scattering (DLS), Transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and Differential scanning calorimetry (DSC). The optimized LTZ-NT was incorporated into 1% chitosan-gel to develop LTZ-NTG. Moreover, in vitro drug release and ex vivo permeation of LTZ-NTG were performed and compared with LTZ-dispersion and LTZ-NT. Additionally, skin irritability and histopathology of LTZ-NTG were investigated. Furthermore, in vitro antitumor study of LTZ-NTG was investigated in BC cell lines. The optimized LTZ-NT showed suitable zeta potential (30.4 mV), spherical size (162.5 nm), and excellent entrapment efficiency (88.04%). Moreover, LTZ-NT exhibited suitable thermal behavior and no interactions among its excipients. In addition, LTZ-NTG had an optimal pH (5.6) and a suitable viscosity. A meaningfully sustained release and improved permeation of LTZ was observed from LTZ-NTG. Additionally, LTZ-NTG showed significantly enhanced cell death of MCF-7 and MCC-7 cells. It can be concluded that LTZ-NTG has the potential to deliver chemotherapeutic agents for possible treatment of BC.
期刊介绍:
Pharmaceutical Development & Technology publishes research on the design, development, manufacture, and evaluation of conventional and novel drug delivery systems, emphasizing practical solutions and applications to theoretical and research-based problems. The journal aims to publish significant, innovative and original research to advance the frontiers of pharmaceutical development and technology.
Through original articles, reviews (where prior discussion with the EIC is encouraged), short reports, book reviews and technical notes, Pharmaceutical Development & Technology covers aspects such as:
-Preformulation and pharmaceutical formulation studies
-Pharmaceutical materials selection and characterization
-Pharmaceutical process development, engineering, scale-up and industrialisation, and process validation
-QbD in the form a risk assessment and DoE driven approaches
-Design of dosage forms and drug delivery systems
-Emerging pharmaceutical formulation and drug delivery technologies with a focus on personalised therapies
-Drug delivery systems research and quality improvement
-Pharmaceutical regulatory affairs
This journal will not consider for publication manuscripts focusing purely on clinical evaluations, botanicals, or animal models.