采用多种方法揭示炎热沙漠中没有巨孢子菌和孢子的稀有性。

IF 3.3 2区 生物学 Q2 MYCOLOGY
Mycorrhiza Pub Date : 2024-07-01 Epub Date: 2024-07-18 DOI:10.1007/s00572-024-01160-w
Alexandre Robin-Soriano, Kenji Maurice, Stéphane Boivin, Amelia Bourceret, Liam Laurent-Webb, Sami Youssef, Jérôme Nespoulous, Inès Boussière, Julie Berder, Coraline Damasio, Bryan Vincent, Hassan Boukcim, Marc Ducousso, Muriel Gros-Balthazard
{"title":"采用多种方法揭示炎热沙漠中没有巨孢子菌和孢子的稀有性。","authors":"Alexandre Robin-Soriano, Kenji Maurice, Stéphane Boivin, Amelia Bourceret, Liam Laurent-Webb, Sami Youssef, Jérôme Nespoulous, Inès Boussière, Julie Berder, Coraline Damasio, Bryan Vincent, Hassan Boukcim, Marc Ducousso, Muriel Gros-Balthazard","doi":"10.1007/s00572-024-01160-w","DOIUrl":null,"url":null,"abstract":"<p><p>Hot deserts impose extreme conditions on plants growing in arid soils. Deserts are expanding due to climate change, thereby increasing the vulnerability of ecosystems and the need to preserve them. Arbuscular mycorrhizal fungi (AMF) improve plant fitness by enhancing plant water/nutrient uptake and stress tolerance. However, few studies have focused on AMF diversity and community composition in deserts, and the soil and land use parameters affecting them. This study aimed to comprehensively describe AMF ecological features in a 5,000 km<sup>2</sup> arid hyperalkaline region in AlUla, Saudi Arabia. We used a multimethod approach to analyse over 1,000 soil and 300 plant root samples of various species encompassing agricultural, old agricultural, urban and natural ecosystems. Our method involved metabarcoding using 18S and ITS2 markers, histological techniques for direct AMF colonization observation and soil spore extraction and observation. Our findings revealed a predominance of AMF taxa assigned to Glomeraceae, regardless of the local conditions, and an almost complete absence of Gigasporales taxa. Land use had little effect on the AMF richness, diversity and community composition, while soil texture, pH and substantial unexplained stochastic variance drove these compositions in AlUla soils. Mycorrhization was frequently observed in the studied plant species, even in usually non-mycorrhizal plant taxa (e.g. Amaranthaceae, Urticaceae). Date palms and Citrus trees, representing two major crops in the region, however, displayed a very low mycorrhizal frequency and intensity. AlUla soils had a very low concentration of spores, which were mostly small. This study generated new insight on AMF and specific behavioral features of these fungi in arid environments.</p>","PeriodicalId":18965,"journal":{"name":"Mycorrhiza","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Absence of Gigasporales and rarity of spores in a hot desert revealed by a multimethod approach.\",\"authors\":\"Alexandre Robin-Soriano, Kenji Maurice, Stéphane Boivin, Amelia Bourceret, Liam Laurent-Webb, Sami Youssef, Jérôme Nespoulous, Inès Boussière, Julie Berder, Coraline Damasio, Bryan Vincent, Hassan Boukcim, Marc Ducousso, Muriel Gros-Balthazard\",\"doi\":\"10.1007/s00572-024-01160-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hot deserts impose extreme conditions on plants growing in arid soils. Deserts are expanding due to climate change, thereby increasing the vulnerability of ecosystems and the need to preserve them. Arbuscular mycorrhizal fungi (AMF) improve plant fitness by enhancing plant water/nutrient uptake and stress tolerance. However, few studies have focused on AMF diversity and community composition in deserts, and the soil and land use parameters affecting them. This study aimed to comprehensively describe AMF ecological features in a 5,000 km<sup>2</sup> arid hyperalkaline region in AlUla, Saudi Arabia. We used a multimethod approach to analyse over 1,000 soil and 300 plant root samples of various species encompassing agricultural, old agricultural, urban and natural ecosystems. Our method involved metabarcoding using 18S and ITS2 markers, histological techniques for direct AMF colonization observation and soil spore extraction and observation. Our findings revealed a predominance of AMF taxa assigned to Glomeraceae, regardless of the local conditions, and an almost complete absence of Gigasporales taxa. Land use had little effect on the AMF richness, diversity and community composition, while soil texture, pH and substantial unexplained stochastic variance drove these compositions in AlUla soils. Mycorrhization was frequently observed in the studied plant species, even in usually non-mycorrhizal plant taxa (e.g. Amaranthaceae, Urticaceae). Date palms and Citrus trees, representing two major crops in the region, however, displayed a very low mycorrhizal frequency and intensity. AlUla soils had a very low concentration of spores, which were mostly small. This study generated new insight on AMF and specific behavioral features of these fungi in arid environments.</p>\",\"PeriodicalId\":18965,\"journal\":{\"name\":\"Mycorrhiza\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mycorrhiza\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00572-024-01160-w\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MYCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mycorrhiza","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00572-024-01160-w","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/18 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MYCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

炎热的沙漠给生长在干旱土壤中的植物带来了极端条件。由于气候变化,沙漠面积不断扩大,从而增加了生态系统的脆弱性和保护生态系统的必要性。丛枝菌根真菌(AMF)能提高植物的水分/养分吸收能力和抗逆性,从而改善植物的健康状况。然而,很少有研究关注沙漠中AMF的多样性和群落组成,以及影响它们的土壤和土地利用参数。本研究旨在全面描述沙特阿拉伯 AlUla 5000 平方公里干旱高碱性地区的 AMF 生态特征。我们采用多种方法分析了 1,000 多份土壤样本和 300 多份不同物种的植物根系样本,涵盖了农业、老农业、城市和自然生态系统。我们的方法包括使用 18S 和 ITS2 标记进行元条码编码、直接观察 AMF 定殖的组织学技术以及土壤孢子提取和观察。我们的研究结果表明,无论当地条件如何,AMF类群主要归属于团扇科(Glomeraceae),而几乎完全没有巨孢子类群(Gigasporales)。土地利用对 AMF 的丰富度、多样性和群落组成几乎没有影响,而土壤质地、pH 值和大量无法解释的随机变异则影响了 AlUla 土壤的这些组成。在所研究的植物物种中经常观察到菌根现象,甚至在通常不产生菌根的植物类群(如苋科、荨麻科)中也是如此。不过,代表该地区两大作物的椰枣树和柑橘树的菌根发生频率和强度都很低。AlUla 土壤中的孢子浓度很低,而且大多很小。这项研究对干旱环境中的 AMF 和这些真菌的特定行为特征有了新的认识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Absence of Gigasporales and rarity of spores in a hot desert revealed by a multimethod approach.

Absence of Gigasporales and rarity of spores in a hot desert revealed by a multimethod approach.

Hot deserts impose extreme conditions on plants growing in arid soils. Deserts are expanding due to climate change, thereby increasing the vulnerability of ecosystems and the need to preserve them. Arbuscular mycorrhizal fungi (AMF) improve plant fitness by enhancing plant water/nutrient uptake and stress tolerance. However, few studies have focused on AMF diversity and community composition in deserts, and the soil and land use parameters affecting them. This study aimed to comprehensively describe AMF ecological features in a 5,000 km2 arid hyperalkaline region in AlUla, Saudi Arabia. We used a multimethod approach to analyse over 1,000 soil and 300 plant root samples of various species encompassing agricultural, old agricultural, urban and natural ecosystems. Our method involved metabarcoding using 18S and ITS2 markers, histological techniques for direct AMF colonization observation and soil spore extraction and observation. Our findings revealed a predominance of AMF taxa assigned to Glomeraceae, regardless of the local conditions, and an almost complete absence of Gigasporales taxa. Land use had little effect on the AMF richness, diversity and community composition, while soil texture, pH and substantial unexplained stochastic variance drove these compositions in AlUla soils. Mycorrhization was frequently observed in the studied plant species, even in usually non-mycorrhizal plant taxa (e.g. Amaranthaceae, Urticaceae). Date palms and Citrus trees, representing two major crops in the region, however, displayed a very low mycorrhizal frequency and intensity. AlUla soils had a very low concentration of spores, which were mostly small. This study generated new insight on AMF and specific behavioral features of these fungi in arid environments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mycorrhiza
Mycorrhiza 生物-真菌学
CiteScore
8.20
自引率
2.60%
发文量
40
审稿时长
6-12 weeks
期刊介绍: Mycorrhiza is an international journal devoted to research into mycorrhizas - the widest symbioses in nature, involving plants and a range of soil fungi world-wide. The scope of Mycorrhiza covers all aspects of research into mycorrhizas, including molecular biology of the plants and fungi, fungal systematics, development and structure of mycorrhizas, and effects on plant physiology, productivity, reproduction and disease resistance. The scope also includes interactions between mycorrhizal fungi and other soil organisms and effects of mycorrhizas on plant biodiversity and ecosystem structure. Mycorrhiza contains original papers, short notes and review articles, along with commentaries and news items. It forms a platform for new concepts and discussions, and is a basis for a truly international forum of mycorrhizologists from all over the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信