释放潜力:离子烯的 PEG 化和分子量降低可增强抗真菌活性和生物相容性。

IF 4.4 4区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Jan M. Kurzyna, Rafał J. Kopiasz, Martyna Paul, Magdalena Flont, Patrycja Baranowska, Jolanta Mierzejewska, Karolina Drężek, Waldemar Tomaszewski, Elżbieta Jastrzębska, Dominik Jańczewski
{"title":"释放潜力:离子烯的 PEG 化和分子量降低可增强抗真菌活性和生物相容性。","authors":"Jan M. Kurzyna,&nbsp;Rafał J. Kopiasz,&nbsp;Martyna Paul,&nbsp;Magdalena Flont,&nbsp;Patrycja Baranowska,&nbsp;Jolanta Mierzejewska,&nbsp;Karolina Drężek,&nbsp;Waldemar Tomaszewski,&nbsp;Elżbieta Jastrzębska,&nbsp;Dominik Jańczewski","doi":"10.1002/mabi.202400032","DOIUrl":null,"url":null,"abstract":"<p>Numerous synthetic polymers, imitating natural antimicrobial peptides, have demonstrated potent antimicrobial activity, positioning them as potential candidates for new antimicrobial drugs. However, the high activity of these molecules often comes at the cost of elevated toxicity against eukaryotic organisms. In this study, a series of cationic ionenes with varying molecular weights to assess the influence of polymer chain length on ionene activity is investigated. To enhance polymer antimicrobial activity and limit toxicity a PEG side chain is introduced into the repeating unit. The resulting molecules consistently exhibited high activity against three model organisms: <i>E. coli</i>, <i>S. aureus</i> and <i>C. albicans</i>. The incorporation of side PEG chain improves antifungal properties and biocompatibility, regardless of molecular weight. The most important finding of this work is that the reduction of polymer molecular mass led to increased antifungal activity and reduced cytotoxicity against HMF and MRC-5 cell lines simultaneously. As a result, the best-performing molecules reported herein displayed minimal inhibitory concentrations (MIC) as low as 2 and 0.0625 µg mL<sup>1</sup> for <i>C. albicans</i> and <i>C. tropicalis</i> respectively, demonstrating exceptional selectivity. It is plausible that some of described herein molecules can serve as potential lead candidates for new antifungal drugs.</p>","PeriodicalId":18103,"journal":{"name":"Macromolecular bioscience","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unlocking the Potential: PEGylation and Molecular Weight Reduction of Ionenes for Enhanced Antifungal Activity and Biocompatibility\",\"authors\":\"Jan M. Kurzyna,&nbsp;Rafał J. Kopiasz,&nbsp;Martyna Paul,&nbsp;Magdalena Flont,&nbsp;Patrycja Baranowska,&nbsp;Jolanta Mierzejewska,&nbsp;Karolina Drężek,&nbsp;Waldemar Tomaszewski,&nbsp;Elżbieta Jastrzębska,&nbsp;Dominik Jańczewski\",\"doi\":\"10.1002/mabi.202400032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Numerous synthetic polymers, imitating natural antimicrobial peptides, have demonstrated potent antimicrobial activity, positioning them as potential candidates for new antimicrobial drugs. However, the high activity of these molecules often comes at the cost of elevated toxicity against eukaryotic organisms. In this study, a series of cationic ionenes with varying molecular weights to assess the influence of polymer chain length on ionene activity is investigated. To enhance polymer antimicrobial activity and limit toxicity a PEG side chain is introduced into the repeating unit. The resulting molecules consistently exhibited high activity against three model organisms: <i>E. coli</i>, <i>S. aureus</i> and <i>C. albicans</i>. The incorporation of side PEG chain improves antifungal properties and biocompatibility, regardless of molecular weight. The most important finding of this work is that the reduction of polymer molecular mass led to increased antifungal activity and reduced cytotoxicity against HMF and MRC-5 cell lines simultaneously. As a result, the best-performing molecules reported herein displayed minimal inhibitory concentrations (MIC) as low as 2 and 0.0625 µg mL<sup>1</sup> for <i>C. albicans</i> and <i>C. tropicalis</i> respectively, demonstrating exceptional selectivity. It is plausible that some of described herein molecules can serve as potential lead candidates for new antifungal drugs.</p>\",\"PeriodicalId\":18103,\"journal\":{\"name\":\"Macromolecular bioscience\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecular bioscience\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mabi.202400032\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular bioscience","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mabi.202400032","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

许多模仿天然抗菌肽的合成聚合物已显示出强大的抗菌活性,使它们成为新型抗菌药物的潜在候选物质。然而,这些分子的高活性往往以对真核生物的高毒性为代价。本研究调查了一系列分子量不同的阳离子离子烯,以评估聚合物链长对离子烯活性的影响。为了增强聚合物的抗菌活性并限制毒性,在重复单元中引入了 PEG 侧链。由此产生的分子对三种模式生物始终表现出较高的活性:大肠杆菌、金黄色葡萄球菌和白僵菌。无论分子量大小,侧 PEG 链的加入都提高了抗真菌性能和生物相容性。这项工作最重要的发现是,聚合物分子质量的降低同时提高了抗真菌活性,降低了对 HMF 和 MRC-5 细胞系的细胞毒性。因此,本文报告的表现最佳的分子对白僵菌和热带僵菌的最小抑菌浓度(MIC)分别低至 2 µg mL1 和 0.0625 µg mL1,显示出卓越的选择性。本文所述的一些分子有可能成为新型抗真菌药物的候选先导分子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unlocking the Potential: PEGylation and Molecular Weight Reduction of Ionenes for Enhanced Antifungal Activity and Biocompatibility

Numerous synthetic polymers, imitating natural antimicrobial peptides, have demonstrated potent antimicrobial activity, positioning them as potential candidates for new antimicrobial drugs. However, the high activity of these molecules often comes at the cost of elevated toxicity against eukaryotic organisms. In this study, a series of cationic ionenes with varying molecular weights to assess the influence of polymer chain length on ionene activity is investigated. To enhance polymer antimicrobial activity and limit toxicity a PEG side chain is introduced into the repeating unit. The resulting molecules consistently exhibited high activity against three model organisms: E. coli, S. aureus and C. albicans. The incorporation of side PEG chain improves antifungal properties and biocompatibility, regardless of molecular weight. The most important finding of this work is that the reduction of polymer molecular mass led to increased antifungal activity and reduced cytotoxicity against HMF and MRC-5 cell lines simultaneously. As a result, the best-performing molecules reported herein displayed minimal inhibitory concentrations (MIC) as low as 2 and 0.0625 µg mL1 for C. albicans and C. tropicalis respectively, demonstrating exceptional selectivity. It is plausible that some of described herein molecules can serve as potential lead candidates for new antifungal drugs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Macromolecular bioscience
Macromolecular bioscience 生物-材料科学:生物材料
CiteScore
7.90
自引率
2.20%
发文量
211
审稿时长
1.5 months
期刊介绍: Macromolecular Bioscience is a leading journal at the intersection of polymer and materials sciences with life science and medicine. With an Impact Factor of 2.895 (2018 Journal Impact Factor, Journal Citation Reports (Clarivate Analytics, 2019)), it is currently ranked among the top biomaterials and polymer journals. Macromolecular Bioscience offers an attractive mixture of high-quality Reviews, Feature Articles, Communications, and Full Papers. With average reviewing times below 30 days, publication times of 2.5 months and listing in all major indices, including Medline, Macromolecular Bioscience is the journal of choice for your best contributions at the intersection of polymer and life sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信