Teagan Weatherall, Pinar Avsar, Linda Nugent, Zena Moore, John H McDermott, Seamus Sreenan, Hannah Wilson, Natalie L McEvoy, Rosemarie Derwin, Paul Chadwick, Declan Patton
{"title":"机器学习对糖尿病足溃疡预测的影响--系统综述。","authors":"Teagan Weatherall, Pinar Avsar, Linda Nugent, Zena Moore, John H McDermott, Seamus Sreenan, Hannah Wilson, Natalie L McEvoy, Rosemarie Derwin, Paul Chadwick, Declan Patton","doi":"10.1016/j.jtv.2024.07.004","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Globally, diabetes mellitus poses a significant health challenge as well as the associated complications of diabetes, such as diabetic foot ulcers (DFUs). The early detection of DFUs is important in the healing process and machine learning may be able to help inform clinical staff during the treatment process.</p><p><strong>Methods: </strong>A PRISMA-informed search of the literature was completed via the Cochrane Library and MEDLINE (OVID), EMBASE, CINAHL Plus and Scopus databases for reports published in English and in the last ten years. The primary outcome of interest was the impact of machine learning on the prediction of DFUs. The secondary outcome was the statistical performance measures reported. Data were extracted using a predesigned data extraction tool. Quality appraisal was undertaken using the evidence-based librarianship critical appraisal tool.</p><p><strong>Results: </strong>A total of 18 reports met the inclusion criteria. Nine reports proposed models to identify two classes, either healthy skin or a DFU. Nine reports proposed models to predict the progress of DFUs, for example, classing infection versus non-infection, or using wound characteristics to predict healing. A variety of machine learning techniques were proposed. Where reported, sensitivity = 74.53-98 %, accuracy = 64.6-99.32 %, precision = 62.9-99 %, and the F-measure = 52.05-99.0 %.</p><p><strong>Conclusions: </strong>A variety of machine learning models were suggested to successfully classify DFUs from healthy skin, or to inform the prediction of DFUs. The proposed machine learning models may have the potential to inform the clinical practice of managing DFUs and may help to improve outcomes for individuals with DFUs. Future research may benefit from the development of a standard device and algorithm that detects, diagnoses and predicts the progress of DFUs.</p>","PeriodicalId":17392,"journal":{"name":"Journal of tissue viability","volume":" ","pages":"853-863"},"PeriodicalIF":2.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The impact of machine learning on the prediction of diabetic foot ulcers - A systematic review.\",\"authors\":\"Teagan Weatherall, Pinar Avsar, Linda Nugent, Zena Moore, John H McDermott, Seamus Sreenan, Hannah Wilson, Natalie L McEvoy, Rosemarie Derwin, Paul Chadwick, Declan Patton\",\"doi\":\"10.1016/j.jtv.2024.07.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Globally, diabetes mellitus poses a significant health challenge as well as the associated complications of diabetes, such as diabetic foot ulcers (DFUs). The early detection of DFUs is important in the healing process and machine learning may be able to help inform clinical staff during the treatment process.</p><p><strong>Methods: </strong>A PRISMA-informed search of the literature was completed via the Cochrane Library and MEDLINE (OVID), EMBASE, CINAHL Plus and Scopus databases for reports published in English and in the last ten years. The primary outcome of interest was the impact of machine learning on the prediction of DFUs. The secondary outcome was the statistical performance measures reported. Data were extracted using a predesigned data extraction tool. Quality appraisal was undertaken using the evidence-based librarianship critical appraisal tool.</p><p><strong>Results: </strong>A total of 18 reports met the inclusion criteria. Nine reports proposed models to identify two classes, either healthy skin or a DFU. Nine reports proposed models to predict the progress of DFUs, for example, classing infection versus non-infection, or using wound characteristics to predict healing. A variety of machine learning techniques were proposed. Where reported, sensitivity = 74.53-98 %, accuracy = 64.6-99.32 %, precision = 62.9-99 %, and the F-measure = 52.05-99.0 %.</p><p><strong>Conclusions: </strong>A variety of machine learning models were suggested to successfully classify DFUs from healthy skin, or to inform the prediction of DFUs. The proposed machine learning models may have the potential to inform the clinical practice of managing DFUs and may help to improve outcomes for individuals with DFUs. Future research may benefit from the development of a standard device and algorithm that detects, diagnoses and predicts the progress of DFUs.</p>\",\"PeriodicalId\":17392,\"journal\":{\"name\":\"Journal of tissue viability\",\"volume\":\" \",\"pages\":\"853-863\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of tissue viability\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jtv.2024.07.004\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"DERMATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of tissue viability","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jtv.2024.07.004","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/11 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"DERMATOLOGY","Score":null,"Total":0}
The impact of machine learning on the prediction of diabetic foot ulcers - A systematic review.
Introduction: Globally, diabetes mellitus poses a significant health challenge as well as the associated complications of diabetes, such as diabetic foot ulcers (DFUs). The early detection of DFUs is important in the healing process and machine learning may be able to help inform clinical staff during the treatment process.
Methods: A PRISMA-informed search of the literature was completed via the Cochrane Library and MEDLINE (OVID), EMBASE, CINAHL Plus and Scopus databases for reports published in English and in the last ten years. The primary outcome of interest was the impact of machine learning on the prediction of DFUs. The secondary outcome was the statistical performance measures reported. Data were extracted using a predesigned data extraction tool. Quality appraisal was undertaken using the evidence-based librarianship critical appraisal tool.
Results: A total of 18 reports met the inclusion criteria. Nine reports proposed models to identify two classes, either healthy skin or a DFU. Nine reports proposed models to predict the progress of DFUs, for example, classing infection versus non-infection, or using wound characteristics to predict healing. A variety of machine learning techniques were proposed. Where reported, sensitivity = 74.53-98 %, accuracy = 64.6-99.32 %, precision = 62.9-99 %, and the F-measure = 52.05-99.0 %.
Conclusions: A variety of machine learning models were suggested to successfully classify DFUs from healthy skin, or to inform the prediction of DFUs. The proposed machine learning models may have the potential to inform the clinical practice of managing DFUs and may help to improve outcomes for individuals with DFUs. Future research may benefit from the development of a standard device and algorithm that detects, diagnoses and predicts the progress of DFUs.
期刊介绍:
The Journal of Tissue Viability is the official publication of the Tissue Viability Society and is a quarterly journal concerned with all aspects of the occurrence and treatment of wounds, ulcers and pressure sores including patient care, pain, nutrition, wound healing, research, prevention, mobility, social problems and management.
The Journal particularly encourages papers covering skin and skin wounds but will consider articles that discuss injury in any tissue. Articles that stress the multi-professional nature of tissue viability are especially welcome. We seek to encourage new authors as well as well-established contributors to the field - one aim of the journal is to enable all participants in tissue viability to share information with colleagues.