生命之树最初枝条上的细胞组织进化。

IF 2.1 3区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Journal of Molecular Evolution Pub Date : 2024-10-01 Epub Date: 2024-07-17 DOI:10.1007/s00239-024-10188-7
Freya Kailing, Jules Lieberman, Joshua Wang, Joshua L Turner, Aaron D Goldman
{"title":"生命之树最初枝条上的细胞组织进化。","authors":"Freya Kailing, Jules Lieberman, Joshua Wang, Joshua L Turner, Aaron D Goldman","doi":"10.1007/s00239-024-10188-7","DOIUrl":null,"url":null,"abstract":"<p><p>Current evidence suggests that some form of cellular organization arose well before the time of the last universal common ancestor (LUCA). Standard phylogenetic analyses have shown that several protein families associated with membrane translocation, membrane transport, and membrane bioenergetics were very likely present in the proteome of the LUCA. Despite these cellular systems emerging prior to the LUCA, extant archaea, bacteria, and eukaryotes have significant differences in cellular infrastructure and the molecular functions that support it, leading some researchers to argue that true cellularity did not evolve until after the LUCA. Here, we use recently reconstructed minimal proteomes of the LUCA as well as the last archaeal common ancestor (LACA) and the last bacterial common ancestor (LBCA) to characterize the evolution of cellular systems along the first branches of the tree of life. We find that a broad set of functions associated with cellular organization were already present by the time of the LUCA. The functional repertoires of the LACA and LBCA related to cellular organization nearly doubled along each branch following the divergence of the LUCA. These evolutionary trends created the foundation for similarities and differences in cellular organization between the taxonomic domains that are still observed today.</p>","PeriodicalId":16366,"journal":{"name":"Journal of Molecular Evolution","volume":" ","pages":"618-623"},"PeriodicalIF":2.1000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11458647/pdf/","citationCount":"0","resultStr":"{\"title\":\"Evolution of Cellular Organization Along the First Branches of the Tree of Life.\",\"authors\":\"Freya Kailing, Jules Lieberman, Joshua Wang, Joshua L Turner, Aaron D Goldman\",\"doi\":\"10.1007/s00239-024-10188-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Current evidence suggests that some form of cellular organization arose well before the time of the last universal common ancestor (LUCA). Standard phylogenetic analyses have shown that several protein families associated with membrane translocation, membrane transport, and membrane bioenergetics were very likely present in the proteome of the LUCA. Despite these cellular systems emerging prior to the LUCA, extant archaea, bacteria, and eukaryotes have significant differences in cellular infrastructure and the molecular functions that support it, leading some researchers to argue that true cellularity did not evolve until after the LUCA. Here, we use recently reconstructed minimal proteomes of the LUCA as well as the last archaeal common ancestor (LACA) and the last bacterial common ancestor (LBCA) to characterize the evolution of cellular systems along the first branches of the tree of life. We find that a broad set of functions associated with cellular organization were already present by the time of the LUCA. The functional repertoires of the LACA and LBCA related to cellular organization nearly doubled along each branch following the divergence of the LUCA. These evolutionary trends created the foundation for similarities and differences in cellular organization between the taxonomic domains that are still observed today.</p>\",\"PeriodicalId\":16366,\"journal\":{\"name\":\"Journal of Molecular Evolution\",\"volume\":\" \",\"pages\":\"618-623\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11458647/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Evolution\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00239-024-10188-7\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00239-024-10188-7","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/17 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

目前的证据表明,某种形式的细胞组织早在最后一个普遍共同祖先(LUCA)出现之前就已经出现了。标准的系统发育分析表明,与膜转运、膜运输和膜生物能相关的几个蛋白质家族很可能出现在 LUCA 蛋白质组中。尽管这些细胞系统在LUCA之前就已出现,但现存的古细菌、细菌和真核生物在细胞基础结构和支持细胞基础结构的分子功能方面存在显著差异,因此一些研究人员认为真正的细胞性是在LUCA之后才进化出来的。在这里,我们利用最近重建的 LUCA 以及最后的古细菌共同祖先(LACA)和最后的细菌共同祖先(LBCA)的最小蛋白质组来描述生命树第一分支的细胞系统进化特征。我们发现,在LUCA时期,与细胞组织相关的一系列功能已经出现。在LUCA分化之后,LACA和LBCA与细胞组织相关的功能几乎在每个分支上都翻了一番。这些进化趋势为分类领域之间细胞组织的相似性和差异性奠定了基础,而这些相似性和差异性在今天仍然可以观察到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Evolution of Cellular Organization Along the First Branches of the Tree of Life.

Evolution of Cellular Organization Along the First Branches of the Tree of Life.

Current evidence suggests that some form of cellular organization arose well before the time of the last universal common ancestor (LUCA). Standard phylogenetic analyses have shown that several protein families associated with membrane translocation, membrane transport, and membrane bioenergetics were very likely present in the proteome of the LUCA. Despite these cellular systems emerging prior to the LUCA, extant archaea, bacteria, and eukaryotes have significant differences in cellular infrastructure and the molecular functions that support it, leading some researchers to argue that true cellularity did not evolve until after the LUCA. Here, we use recently reconstructed minimal proteomes of the LUCA as well as the last archaeal common ancestor (LACA) and the last bacterial common ancestor (LBCA) to characterize the evolution of cellular systems along the first branches of the tree of life. We find that a broad set of functions associated with cellular organization were already present by the time of the LUCA. The functional repertoires of the LACA and LBCA related to cellular organization nearly doubled along each branch following the divergence of the LUCA. These evolutionary trends created the foundation for similarities and differences in cellular organization between the taxonomic domains that are still observed today.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Molecular Evolution
Journal of Molecular Evolution 生物-进化生物学
CiteScore
5.50
自引率
2.60%
发文量
36
审稿时长
3 months
期刊介绍: Journal of Molecular Evolution covers experimental, computational, and theoretical work aimed at deciphering features of molecular evolution and the processes bearing on these features, from the initial formation of macromolecular systems through their evolution at the molecular level, the co-evolution of their functions in cellular and organismal systems, and their influence on organismal adaptation, speciation, and ecology. Topics addressed include the evolution of informational macromolecules and their relation to more complex levels of biological organization, including populations and taxa, as well as the molecular basis for the evolution of ecological interactions of species and the use of molecular data to infer fundamental processes in evolutionary ecology. This coverage accommodates such subfields as new genome sequences, comparative structural and functional genomics, population genetics, the molecular evolution of development, the evolution of gene regulation and gene interaction networks, and in vitro evolution of DNA and RNA, molecular evolutionary ecology, and the development of methods and theory that enable molecular evolutionary inference, including but not limited to, phylogenetic methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信