{"title":"结核分枝杆菌利用丝氨酸/苏氨酸激酶 PknF 回避小鼠树突状细胞中 NLRP3 炎症体驱动的 Caspase-1 和 RIPK3/Caspase-8 激活。","authors":"Shivangi Rastogi, Akshaya Ganesh, Volker Briken","doi":"10.4049/jimmunol.2300753","DOIUrl":null,"url":null,"abstract":"<p><p>Dendritic cells (DCs) are crucial for initiating the acquired immune response to infectious diseases such as tuberculosis. Mycobacterium tuberculosis has evolved strategies to inhibit activation of the NLRP3 inflammasome in macrophages via its serine/threonine protein kinase, protein kinase F (PknF). It is not known whether this pathway is conserved in DCs. In this study, we show that the pknF deletion mutant of M. tuberculosis (MtbΔpknF) compared with wild-type M. tuberculosis-infected cells induces increased production of IL-1β and increased pyroptosis in murine bone marrow-derived DCs (BMDCs). As shown for murine macrophages, the enhanced production of IL-1β postinfection of BMDCs with MtbΔpknF is dependent on NLRP3, ASC, and caspase-1/11. In contrast to macrophages, we show that MtbΔpknF mediates RIPK3/caspase-8-dependent IL-1β production in BMDCs. Consistently, infection with MtbΔpknF results in increased activation of caspase-1 and caspase-8 in BMDCs. When compared with M. tuberculosis-infected cells, the IL-6 production by MtbΔpknF-infected cells was unchanged, indicating that the mutant does not affect the priming phase of inflammasome activation. In contrast, the activation phase was impacted because the MtbΔpknF-induced inflammasome activation in BMDCs depended on potassium efflux, chloride efflux, reactive oxygen species generation, and calcium influx. In conclusion, PknF is important for M. tuberculosis to evade NLRP3 inflammasome-mediated activation of caspase-1 and RIPK3/caspase-8 pathways in BMDCs.</p>","PeriodicalId":16045,"journal":{"name":"Journal of immunology","volume":" ","pages":"690-699"},"PeriodicalIF":3.6000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mycobacterium tuberculosis Utilizes Serine/Threonine Kinase PknF to Evade NLRP3 Inflammasome-driven Caspase-1 and RIPK3/Caspase-8 Activation in Murine Dendritic Cells.\",\"authors\":\"Shivangi Rastogi, Akshaya Ganesh, Volker Briken\",\"doi\":\"10.4049/jimmunol.2300753\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Dendritic cells (DCs) are crucial for initiating the acquired immune response to infectious diseases such as tuberculosis. Mycobacterium tuberculosis has evolved strategies to inhibit activation of the NLRP3 inflammasome in macrophages via its serine/threonine protein kinase, protein kinase F (PknF). It is not known whether this pathway is conserved in DCs. In this study, we show that the pknF deletion mutant of M. tuberculosis (MtbΔpknF) compared with wild-type M. tuberculosis-infected cells induces increased production of IL-1β and increased pyroptosis in murine bone marrow-derived DCs (BMDCs). As shown for murine macrophages, the enhanced production of IL-1β postinfection of BMDCs with MtbΔpknF is dependent on NLRP3, ASC, and caspase-1/11. In contrast to macrophages, we show that MtbΔpknF mediates RIPK3/caspase-8-dependent IL-1β production in BMDCs. Consistently, infection with MtbΔpknF results in increased activation of caspase-1 and caspase-8 in BMDCs. When compared with M. tuberculosis-infected cells, the IL-6 production by MtbΔpknF-infected cells was unchanged, indicating that the mutant does not affect the priming phase of inflammasome activation. In contrast, the activation phase was impacted because the MtbΔpknF-induced inflammasome activation in BMDCs depended on potassium efflux, chloride efflux, reactive oxygen species generation, and calcium influx. In conclusion, PknF is important for M. tuberculosis to evade NLRP3 inflammasome-mediated activation of caspase-1 and RIPK3/caspase-8 pathways in BMDCs.</p>\",\"PeriodicalId\":16045,\"journal\":{\"name\":\"Journal of immunology\",\"volume\":\" \",\"pages\":\"690-699\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of immunology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.4049/jimmunol.2300753\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4049/jimmunol.2300753","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Mycobacterium tuberculosis Utilizes Serine/Threonine Kinase PknF to Evade NLRP3 Inflammasome-driven Caspase-1 and RIPK3/Caspase-8 Activation in Murine Dendritic Cells.
Dendritic cells (DCs) are crucial for initiating the acquired immune response to infectious diseases such as tuberculosis. Mycobacterium tuberculosis has evolved strategies to inhibit activation of the NLRP3 inflammasome in macrophages via its serine/threonine protein kinase, protein kinase F (PknF). It is not known whether this pathway is conserved in DCs. In this study, we show that the pknF deletion mutant of M. tuberculosis (MtbΔpknF) compared with wild-type M. tuberculosis-infected cells induces increased production of IL-1β and increased pyroptosis in murine bone marrow-derived DCs (BMDCs). As shown for murine macrophages, the enhanced production of IL-1β postinfection of BMDCs with MtbΔpknF is dependent on NLRP3, ASC, and caspase-1/11. In contrast to macrophages, we show that MtbΔpknF mediates RIPK3/caspase-8-dependent IL-1β production in BMDCs. Consistently, infection with MtbΔpknF results in increased activation of caspase-1 and caspase-8 in BMDCs. When compared with M. tuberculosis-infected cells, the IL-6 production by MtbΔpknF-infected cells was unchanged, indicating that the mutant does not affect the priming phase of inflammasome activation. In contrast, the activation phase was impacted because the MtbΔpknF-induced inflammasome activation in BMDCs depended on potassium efflux, chloride efflux, reactive oxygen species generation, and calcium influx. In conclusion, PknF is important for M. tuberculosis to evade NLRP3 inflammasome-mediated activation of caspase-1 and RIPK3/caspase-8 pathways in BMDCs.
期刊介绍:
The JI publishes novel, peer-reviewed findings in all areas of experimental immunology, including innate and adaptive immunity, inflammation, host defense, clinical immunology, autoimmunity and more. Special sections include Cutting Edge articles, Brief Reviews and Pillars of Immunology. The JI is published by The American Association of Immunologists (AAI)