Dan Song, Yu Chen, Peng Wang, Yeqian Cheng, Ng Shyh-Chang
{"title":"Lin28a与Igf2bp3形成RNA结合复合物,调节肌肉干细胞应激颗粒中的m6A修饰应激反应基因。","authors":"Dan Song, Yu Chen, Peng Wang, Yeqian Cheng, Ng Shyh-Chang","doi":"10.1111/cpr.13707","DOIUrl":null,"url":null,"abstract":"<p><p>In the early embryonic stages, Lin-28 homologue A (Lin28a) is highly expressed and declines as the embryo matures. As an RNA-binding protein, Lin28a maintains some adult muscle stem cells (MuSCs) in an embryonic-like state, but its RNA metabolism regulation mechanism remains unclear. BioGPS analysis revealed that Lin28a expression is significantly higher in muscle tissues than in other tissues. Lin28a-positive muscle stem cells (Lin28a+ MuSCs) were sorted from Lin28a-CreERT2; LSL-tdTomato mouse skeletal muscle tissue, which exhibited a higher proliferation rate than the control group. Lin28a-bound transcripts are enriched in various biological processes such as DNA repair, cell cycle, mitochondrial tricarboxylic acid cycle and oxidative stress response. The expression of insulin-like growth factor 2 mRNA-binding protein 3 (Igf2bp3) was markedly elevated in the presence of Lin28a. Co-immunoprecipitation analysis further demonstrated that Lin28a associates with Igf2bp3. Immunofluorescence analyses confirmed that Lin28a, Igf2bp3 and G3bp1 colocalize to form stress granules (SG), and N6-methyladenosine (m<sup>6</sup>A) modification promotes the formation of Lin28a-SG. Sequencing of the transcriptome and RNAs immunoprecipitated by Lin28a, Igf2bp3 and m<sup>6</sup>A antibodies in Lin28a+ MuSCs further revealed that Lin28a and Igf2bp3 collaboratively regulate the expression of DNA repair-related genes, including Fancm and Usp1. Lin28a stabilises Igf2bp3, Usp1, and Fancm mRNAs, enhancing DNA repair against oxidative or proteotoxic stress, thus promoting MuSCs self-renewal. Understanding the intricate mechanisms through which Lin28a and Igf2bp3 regulate MuSCs provides a deeper understanding of stem cell self-renewal, with potential implications for regenerative medicine.</p>","PeriodicalId":9760,"journal":{"name":"Cell Proliferation","volume":" ","pages":"e13707"},"PeriodicalIF":5.9000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lin28a forms an RNA-binding complex with Igf2bp3 to regulate m<sup>6</sup>A-modified stress response genes in stress granules of muscle stem cells.\",\"authors\":\"Dan Song, Yu Chen, Peng Wang, Yeqian Cheng, Ng Shyh-Chang\",\"doi\":\"10.1111/cpr.13707\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In the early embryonic stages, Lin-28 homologue A (Lin28a) is highly expressed and declines as the embryo matures. As an RNA-binding protein, Lin28a maintains some adult muscle stem cells (MuSCs) in an embryonic-like state, but its RNA metabolism regulation mechanism remains unclear. BioGPS analysis revealed that Lin28a expression is significantly higher in muscle tissues than in other tissues. Lin28a-positive muscle stem cells (Lin28a+ MuSCs) were sorted from Lin28a-CreERT2; LSL-tdTomato mouse skeletal muscle tissue, which exhibited a higher proliferation rate than the control group. Lin28a-bound transcripts are enriched in various biological processes such as DNA repair, cell cycle, mitochondrial tricarboxylic acid cycle and oxidative stress response. The expression of insulin-like growth factor 2 mRNA-binding protein 3 (Igf2bp3) was markedly elevated in the presence of Lin28a. Co-immunoprecipitation analysis further demonstrated that Lin28a associates with Igf2bp3. Immunofluorescence analyses confirmed that Lin28a, Igf2bp3 and G3bp1 colocalize to form stress granules (SG), and N6-methyladenosine (m<sup>6</sup>A) modification promotes the formation of Lin28a-SG. Sequencing of the transcriptome and RNAs immunoprecipitated by Lin28a, Igf2bp3 and m<sup>6</sup>A antibodies in Lin28a+ MuSCs further revealed that Lin28a and Igf2bp3 collaboratively regulate the expression of DNA repair-related genes, including Fancm and Usp1. Lin28a stabilises Igf2bp3, Usp1, and Fancm mRNAs, enhancing DNA repair against oxidative or proteotoxic stress, thus promoting MuSCs self-renewal. Understanding the intricate mechanisms through which Lin28a and Igf2bp3 regulate MuSCs provides a deeper understanding of stem cell self-renewal, with potential implications for regenerative medicine.</p>\",\"PeriodicalId\":9760,\"journal\":{\"name\":\"Cell Proliferation\",\"volume\":\" \",\"pages\":\"e13707\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Proliferation\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/cpr.13707\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Proliferation","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/cpr.13707","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Lin28a forms an RNA-binding complex with Igf2bp3 to regulate m6A-modified stress response genes in stress granules of muscle stem cells.
In the early embryonic stages, Lin-28 homologue A (Lin28a) is highly expressed and declines as the embryo matures. As an RNA-binding protein, Lin28a maintains some adult muscle stem cells (MuSCs) in an embryonic-like state, but its RNA metabolism regulation mechanism remains unclear. BioGPS analysis revealed that Lin28a expression is significantly higher in muscle tissues than in other tissues. Lin28a-positive muscle stem cells (Lin28a+ MuSCs) were sorted from Lin28a-CreERT2; LSL-tdTomato mouse skeletal muscle tissue, which exhibited a higher proliferation rate than the control group. Lin28a-bound transcripts are enriched in various biological processes such as DNA repair, cell cycle, mitochondrial tricarboxylic acid cycle and oxidative stress response. The expression of insulin-like growth factor 2 mRNA-binding protein 3 (Igf2bp3) was markedly elevated in the presence of Lin28a. Co-immunoprecipitation analysis further demonstrated that Lin28a associates with Igf2bp3. Immunofluorescence analyses confirmed that Lin28a, Igf2bp3 and G3bp1 colocalize to form stress granules (SG), and N6-methyladenosine (m6A) modification promotes the formation of Lin28a-SG. Sequencing of the transcriptome and RNAs immunoprecipitated by Lin28a, Igf2bp3 and m6A antibodies in Lin28a+ MuSCs further revealed that Lin28a and Igf2bp3 collaboratively regulate the expression of DNA repair-related genes, including Fancm and Usp1. Lin28a stabilises Igf2bp3, Usp1, and Fancm mRNAs, enhancing DNA repair against oxidative or proteotoxic stress, thus promoting MuSCs self-renewal. Understanding the intricate mechanisms through which Lin28a and Igf2bp3 regulate MuSCs provides a deeper understanding of stem cell self-renewal, with potential implications for regenerative medicine.
期刊介绍:
Cell Proliferation
Focus:
Devoted to studies into all aspects of cell proliferation and differentiation.
Covers normal and abnormal states.
Explores control systems and mechanisms at various levels: inter- and intracellular, molecular, and genetic.
Investigates modification by and interactions with chemical and physical agents.
Includes mathematical modeling and the development of new techniques.
Publication Content:
Original research papers
Invited review articles
Book reviews
Letters commenting on previously published papers and/or topics of general interest
By organizing the information in this manner, readers can quickly grasp the scope, focus, and publication content of Cell Proliferation.