{"title":"赛庚素对 Orai 介导的 Ca2+ 进入的调控--神经退行性病变的新靶点。","authors":"Gaiti Hasan","doi":"10.1016/j.ceca.2024.102929","DOIUrl":null,"url":null,"abstract":"<div><p>Aberrant Ca<sup>2+</sup> signaling is an early hallmark of multiple neurodegenerative syndromes including Alzheimer's and Parkinson's disease (AD and PD) as well as classes of rare genetic disorders such as Spinocebellar Ataxias. Therapeutic strategies that target aberrant Ca<sup>2+</sup> signals whilst allowing normal neuronal Ca<sup>2+</sup> signals have been a challenge. In a recent study Princen et al., performed a screen in the tauP301L cell model of AD for drugs that could specifically ameliorate the excess Ca<sup>2+</sup> entry observed. They identified a class of compounds referred to as ReS19-T that interact with Septins, previously identified as regulators of the Store-operated Ca<sup>2+</sup> entry channel Orai. Drug treatment of the cellular model, a mouse model and human iPSC derived neurons alleviate cellular and systemic deficits associated with tauP301L. Comparison of Septin filament architecture in disease conditions with and without the drug treatment indicate that excess Ca<sup>2+</sup> entry is a consequence of abnormal Septin filament architecture resulting in aberrant ER-PM contacts. The importance of membrane contacts for maintaining precise cellular signaling has been recognized previously. However, the molecular mechanism by which Septin filaments organize the ER-PM junctions to regulate Ca<sup>2+</sup> entry through Orai remains to be fully understood.</p></div>","PeriodicalId":9678,"journal":{"name":"Cell calcium","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Septin regulation of Orai-mediated Ca2+ entry - a novel target for neurodegeneration\",\"authors\":\"Gaiti Hasan\",\"doi\":\"10.1016/j.ceca.2024.102929\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Aberrant Ca<sup>2+</sup> signaling is an early hallmark of multiple neurodegenerative syndromes including Alzheimer's and Parkinson's disease (AD and PD) as well as classes of rare genetic disorders such as Spinocebellar Ataxias. Therapeutic strategies that target aberrant Ca<sup>2+</sup> signals whilst allowing normal neuronal Ca<sup>2+</sup> signals have been a challenge. In a recent study Princen et al., performed a screen in the tauP301L cell model of AD for drugs that could specifically ameliorate the excess Ca<sup>2+</sup> entry observed. They identified a class of compounds referred to as ReS19-T that interact with Septins, previously identified as regulators of the Store-operated Ca<sup>2+</sup> entry channel Orai. Drug treatment of the cellular model, a mouse model and human iPSC derived neurons alleviate cellular and systemic deficits associated with tauP301L. Comparison of Septin filament architecture in disease conditions with and without the drug treatment indicate that excess Ca<sup>2+</sup> entry is a consequence of abnormal Septin filament architecture resulting in aberrant ER-PM contacts. The importance of membrane contacts for maintaining precise cellular signaling has been recognized previously. However, the molecular mechanism by which Septin filaments organize the ER-PM junctions to regulate Ca<sup>2+</sup> entry through Orai remains to be fully understood.</p></div>\",\"PeriodicalId\":9678,\"journal\":{\"name\":\"Cell calcium\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell calcium\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0143416024000873\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell calcium","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0143416024000873","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Septin regulation of Orai-mediated Ca2+ entry - a novel target for neurodegeneration
Aberrant Ca2+ signaling is an early hallmark of multiple neurodegenerative syndromes including Alzheimer's and Parkinson's disease (AD and PD) as well as classes of rare genetic disorders such as Spinocebellar Ataxias. Therapeutic strategies that target aberrant Ca2+ signals whilst allowing normal neuronal Ca2+ signals have been a challenge. In a recent study Princen et al., performed a screen in the tauP301L cell model of AD for drugs that could specifically ameliorate the excess Ca2+ entry observed. They identified a class of compounds referred to as ReS19-T that interact with Septins, previously identified as regulators of the Store-operated Ca2+ entry channel Orai. Drug treatment of the cellular model, a mouse model and human iPSC derived neurons alleviate cellular and systemic deficits associated with tauP301L. Comparison of Septin filament architecture in disease conditions with and without the drug treatment indicate that excess Ca2+ entry is a consequence of abnormal Septin filament architecture resulting in aberrant ER-PM contacts. The importance of membrane contacts for maintaining precise cellular signaling has been recognized previously. However, the molecular mechanism by which Septin filaments organize the ER-PM junctions to regulate Ca2+ entry through Orai remains to be fully understood.
期刊介绍:
Cell Calcium covers the field of calcium metabolism and signalling in living systems, from aspects including inorganic chemistry, physiology, molecular biology and pathology. Topic themes include:
Roles of calcium in regulating cellular events such as apoptosis, necrosis and organelle remodelling
Influence of calcium regulation in affecting health and disease outcomes