{"title":"通过超高效液相色谱-飞行时间质谱法结合 DNPH 衍生法检测獐牙菜苷的表聚代谢物。","authors":"Hao Li, Shuhan Tang, Yaqi Xu, Yidan Sun, Pengyu Li, Xianna Li, Hailong Zhang, Masao Hattori, Zhigang Wang","doi":"10.1002/bmc.5966","DOIUrl":null,"url":null,"abstract":"<p>The metabolites of sweroside were first investigated <i>in vivo</i> with ultra-performance liquid chromatography time-of-flight mass spectrometry (UPLC–TOF–MS) in combination with 2,4-dinitrophenylhydrazine derivatization. In addition, the mass detection sensitivity of the major metabolites, epinaucledal and naucledal, via UPLC–TOF–MS was significantly enhanced, and the epimer metabolites were distinctly discovered from plasma following gavage of sweroside in rats. The plasma concentration of epinaucledal and naucledal was quantified via UPLC–TOF–MS in negative mode using erythrocentaurin as the internal standard. The maximum mean plasma concentrations of naucledal and epinaucledal were 75.36 ± 20.10 and 43.52 ± 15.60 ng/ml within 2 h, respectively, following gavage of sweroside at 20 mg/kg. Moreover, the area under the concentration–time curve of naucledal was three times that of epinaucledal. The metabolic process of conversion of sweroside to epinaucledal and naucledal was deduced, and the pharmacological effects of epinaucledal and naucledal will clarify the clinical efficacy of sweroside.</p>","PeriodicalId":8861,"journal":{"name":"Biomedical Chromatography","volume":"38 10","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In vivo detection of the epimer metabolites of sweroside via ultra-performance liquid chromatography time-of-flight mass spectrometry combined with DNPH derivatization\",\"authors\":\"Hao Li, Shuhan Tang, Yaqi Xu, Yidan Sun, Pengyu Li, Xianna Li, Hailong Zhang, Masao Hattori, Zhigang Wang\",\"doi\":\"10.1002/bmc.5966\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The metabolites of sweroside were first investigated <i>in vivo</i> with ultra-performance liquid chromatography time-of-flight mass spectrometry (UPLC–TOF–MS) in combination with 2,4-dinitrophenylhydrazine derivatization. In addition, the mass detection sensitivity of the major metabolites, epinaucledal and naucledal, via UPLC–TOF–MS was significantly enhanced, and the epimer metabolites were distinctly discovered from plasma following gavage of sweroside in rats. The plasma concentration of epinaucledal and naucledal was quantified via UPLC–TOF–MS in negative mode using erythrocentaurin as the internal standard. The maximum mean plasma concentrations of naucledal and epinaucledal were 75.36 ± 20.10 and 43.52 ± 15.60 ng/ml within 2 h, respectively, following gavage of sweroside at 20 mg/kg. Moreover, the area under the concentration–time curve of naucledal was three times that of epinaucledal. The metabolic process of conversion of sweroside to epinaucledal and naucledal was deduced, and the pharmacological effects of epinaucledal and naucledal will clarify the clinical efficacy of sweroside.</p>\",\"PeriodicalId\":8861,\"journal\":{\"name\":\"Biomedical Chromatography\",\"volume\":\"38 10\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Chromatography\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/bmc.5966\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Chromatography","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bmc.5966","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
In vivo detection of the epimer metabolites of sweroside via ultra-performance liquid chromatography time-of-flight mass spectrometry combined with DNPH derivatization
The metabolites of sweroside were first investigated in vivo with ultra-performance liquid chromatography time-of-flight mass spectrometry (UPLC–TOF–MS) in combination with 2,4-dinitrophenylhydrazine derivatization. In addition, the mass detection sensitivity of the major metabolites, epinaucledal and naucledal, via UPLC–TOF–MS was significantly enhanced, and the epimer metabolites were distinctly discovered from plasma following gavage of sweroside in rats. The plasma concentration of epinaucledal and naucledal was quantified via UPLC–TOF–MS in negative mode using erythrocentaurin as the internal standard. The maximum mean plasma concentrations of naucledal and epinaucledal were 75.36 ± 20.10 and 43.52 ± 15.60 ng/ml within 2 h, respectively, following gavage of sweroside at 20 mg/kg. Moreover, the area under the concentration–time curve of naucledal was three times that of epinaucledal. The metabolic process of conversion of sweroside to epinaucledal and naucledal was deduced, and the pharmacological effects of epinaucledal and naucledal will clarify the clinical efficacy of sweroside.
期刊介绍:
Biomedical Chromatography is devoted to the publication of original papers on the applications of chromatography and allied techniques in the biological and medical sciences. Research papers and review articles cover the methods and techniques relevant to the separation, identification and determination of substances in biochemistry, biotechnology, molecular biology, cell biology, clinical chemistry, pharmacology and related disciplines. These include the analysis of body fluids, cells and tissues, purification of biologically important compounds, pharmaco-kinetics and sequencing methods using HPLC, GC, HPLC-MS, TLC, paper chromatography, affinity chromatography, gel filtration, electrophoresis and related techniques.