基于微型探针的活体内窥镜光学相干弹性成像。

IF 2.9 2区 医学 Q2 BIOCHEMICAL RESEARCH METHODS
Biomedical optics express Pub Date : 2024-06-12 eCollection Date: 2024-07-01 DOI:10.1364/BOE.521154
Haoxing Xu, Qingrong Xia, Chengyou Shu, Jiale Lan, Xiatian Wang, Wen Gao, Shengmiao Lv, Riqiang Lin, Zhihua Xie, Xiaohui Xiong, Fei Li, Jinke Zhang, Xiaojing Gong
{"title":"基于微型探针的活体内窥镜光学相干弹性成像。","authors":"Haoxing Xu, Qingrong Xia, Chengyou Shu, Jiale Lan, Xiatian Wang, Wen Gao, Shengmiao Lv, Riqiang Lin, Zhihua Xie, Xiaohui Xiong, Fei Li, Jinke Zhang, Xiaojing Gong","doi":"10.1364/BOE.521154","DOIUrl":null,"url":null,"abstract":"<p><p>Optical coherence elastography (OCE) is a functional extension of optical coherence tomography (OCT). It offers high-resolution elasticity assessment with nanoscale tissue displacement sensitivity and high quantification accuracy, promising to enhance diagnostic precision. However, <i>in vivo</i> endoscopic OCE imaging has not been demonstrated yet, which needs to overcome key challenges related to probe miniaturization, high excitation efficiency and speed. This study presents a novel endoscopic OCE system, achieving the first endoscopic OCE imaging <i>in vivo</i>. The system features the smallest integrated OCE probe with an outer diameter of only 0.9 mm (with a 1.2-mm protective tube during imaging). Utilizing a single 38-MHz high-frequency ultrasound transducer, the system induced rapid deformation in tissues with enhanced excitation efficiency. In phantom studies, the OCE quantification results match well with compression testing results, showing the system's high accuracy. The <i>in vivo</i> imaging of the rat vagina demonstrated the system's capability to detect changes in tissue elasticity continually and distinguish between normal tissue, hematomas, and tissue with increased collagen fibers precisely. This research narrows the gap for the clinical implementation of the endoscopic OCE system, offering the potential for the early diagnosis of intraluminal diseases.</p>","PeriodicalId":8969,"journal":{"name":"Biomedical optics express","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11249679/pdf/","citationCount":"0","resultStr":"{\"title\":\"<i>In vivo</i> endoscopic optical coherence elastography based on a miniature probe.\",\"authors\":\"Haoxing Xu, Qingrong Xia, Chengyou Shu, Jiale Lan, Xiatian Wang, Wen Gao, Shengmiao Lv, Riqiang Lin, Zhihua Xie, Xiaohui Xiong, Fei Li, Jinke Zhang, Xiaojing Gong\",\"doi\":\"10.1364/BOE.521154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Optical coherence elastography (OCE) is a functional extension of optical coherence tomography (OCT). It offers high-resolution elasticity assessment with nanoscale tissue displacement sensitivity and high quantification accuracy, promising to enhance diagnostic precision. However, <i>in vivo</i> endoscopic OCE imaging has not been demonstrated yet, which needs to overcome key challenges related to probe miniaturization, high excitation efficiency and speed. This study presents a novel endoscopic OCE system, achieving the first endoscopic OCE imaging <i>in vivo</i>. The system features the smallest integrated OCE probe with an outer diameter of only 0.9 mm (with a 1.2-mm protective tube during imaging). Utilizing a single 38-MHz high-frequency ultrasound transducer, the system induced rapid deformation in tissues with enhanced excitation efficiency. In phantom studies, the OCE quantification results match well with compression testing results, showing the system's high accuracy. The <i>in vivo</i> imaging of the rat vagina demonstrated the system's capability to detect changes in tissue elasticity continually and distinguish between normal tissue, hematomas, and tissue with increased collagen fibers precisely. This research narrows the gap for the clinical implementation of the endoscopic OCE system, offering the potential for the early diagnosis of intraluminal diseases.</p>\",\"PeriodicalId\":8969,\"journal\":{\"name\":\"Biomedical optics express\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11249679/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical optics express\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1364/BOE.521154\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical optics express","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1364/BOE.521154","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

光学相干弹性成像(OCE)是光学相干断层扫描(OCT)的功能扩展。它提供高分辨率弹性评估,具有纳米级组织位移灵敏度和高量化准确性,有望提高诊断精度。然而,活体内窥镜 OCE 成像尚未得到证实,需要克服探头微型化、高激发效率和速度等关键挑战。本研究介绍了一种新型内窥镜 OCE 系统,首次实现了内窥镜 OCE 在体内成像。该系统具有最小的集成 OCE 探头,外径仅为 0.9 毫米(成像时带有 1.2 毫米的保护管)。该系统利用单个 38-MHz 高频超声换能器,在提高激发效率的同时诱导组织快速变形。在模型研究中,OCE 量化结果与压缩测试结果非常吻合,显示了该系统的高准确性。大鼠阴道的活体成像表明,该系统能够持续检测组织弹性的变化,并精确区分正常组织、血肿和胶原纤维增多的组织。这项研究缩小了内窥镜 OCE 系统在临床应用方面的差距,为早期诊断腔内疾病提供了可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
In vivo endoscopic optical coherence elastography based on a miniature probe.

Optical coherence elastography (OCE) is a functional extension of optical coherence tomography (OCT). It offers high-resolution elasticity assessment with nanoscale tissue displacement sensitivity and high quantification accuracy, promising to enhance diagnostic precision. However, in vivo endoscopic OCE imaging has not been demonstrated yet, which needs to overcome key challenges related to probe miniaturization, high excitation efficiency and speed. This study presents a novel endoscopic OCE system, achieving the first endoscopic OCE imaging in vivo. The system features the smallest integrated OCE probe with an outer diameter of only 0.9 mm (with a 1.2-mm protective tube during imaging). Utilizing a single 38-MHz high-frequency ultrasound transducer, the system induced rapid deformation in tissues with enhanced excitation efficiency. In phantom studies, the OCE quantification results match well with compression testing results, showing the system's high accuracy. The in vivo imaging of the rat vagina demonstrated the system's capability to detect changes in tissue elasticity continually and distinguish between normal tissue, hematomas, and tissue with increased collagen fibers precisely. This research narrows the gap for the clinical implementation of the endoscopic OCE system, offering the potential for the early diagnosis of intraluminal diseases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomedical optics express
Biomedical optics express BIOCHEMICAL RESEARCH METHODS-OPTICS
CiteScore
6.80
自引率
11.80%
发文量
633
审稿时长
1 months
期刊介绍: The journal''s scope encompasses fundamental research, technology development, biomedical studies and clinical applications. BOEx focuses on the leading edge topics in the field, including: Tissue optics and spectroscopy Novel microscopies Optical coherence tomography Diffuse and fluorescence tomography Photoacoustic and multimodal imaging Molecular imaging and therapies Nanophotonic biosensing Optical biophysics/photobiology Microfluidic optical devices Vision research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信