Huiping Zhou, Fan Yang, Guanghua Li, Lu Yuan, Tingting Ge, Changmin Niu, Ying Zheng
{"title":"消耗 CCDC189 会导致小鼠出现少精症和雄性不育。","authors":"Huiping Zhou, Fan Yang, Guanghua Li, Lu Yuan, Tingting Ge, Changmin Niu, Ying Zheng","doi":"10.1093/biolre/ioae112","DOIUrl":null,"url":null,"abstract":"<p><p>In male reproductive system, proteins containing the coiled-coil domain (CCDC) are predominantly expressed in specific regions including the testis, epididymis, seminal vesicle, and prostate. They play a vital role in centriole formation, sperm motility and flagellar development in male gametes. Despite being highly expressed in the testis, the exact physiological function of the coiled-coil domain-containing 189 (Ccdc189) gene remain largely unclear. Our research provides a comprehensive and detailed investigation into the localization of CCDC189 protein within the testis seminiferous tubules. CCDC189 specifically expressed in spermatocytes, round spermatids, and elongating spermatids in mouse testis. The deletion of Ccdc189 in mouse leads to male infertility, characterized by significantly reduced sperm counts and motility. Abnormally shaped spermatozoa with irregular tails, exhibiting shortened and twisted morphology, were observed in the seminiferous tubules. Electron microscopy revealed disordered and missing peripheral microtubule doublets (MTD) and outer dense fibers (ODF) in the sperm flagella, accompanied by a consistent absence of central pairs (CP). The knockout of Ccdc189 resulted in oligo-astheno-teratozoospermia, which is characterized by low sperm count and reduced sperm motility and abnormal morphology. Furthermore, we identified poly(A)-binding protein cytoplasmic 1 (PABPC1) and PABPC2 as interacting proteins with CCDC189. These proteins belong to the PABP family and are involved in regulating mRNA translational activity in spermatogenic cells by specifically binding to poly(A) tails at the 3' ends of mRNAs.</p>","PeriodicalId":8965,"journal":{"name":"Biology of Reproduction","volume":" ","pages":"800-814"},"PeriodicalIF":3.1000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CCDC189 depletion leads to oligo-astheno-teratozoospermia and male infertility in mice†.\",\"authors\":\"Huiping Zhou, Fan Yang, Guanghua Li, Lu Yuan, Tingting Ge, Changmin Niu, Ying Zheng\",\"doi\":\"10.1093/biolre/ioae112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In male reproductive system, proteins containing the coiled-coil domain (CCDC) are predominantly expressed in specific regions including the testis, epididymis, seminal vesicle, and prostate. They play a vital role in centriole formation, sperm motility and flagellar development in male gametes. Despite being highly expressed in the testis, the exact physiological function of the coiled-coil domain-containing 189 (Ccdc189) gene remain largely unclear. Our research provides a comprehensive and detailed investigation into the localization of CCDC189 protein within the testis seminiferous tubules. CCDC189 specifically expressed in spermatocytes, round spermatids, and elongating spermatids in mouse testis. The deletion of Ccdc189 in mouse leads to male infertility, characterized by significantly reduced sperm counts and motility. Abnormally shaped spermatozoa with irregular tails, exhibiting shortened and twisted morphology, were observed in the seminiferous tubules. Electron microscopy revealed disordered and missing peripheral microtubule doublets (MTD) and outer dense fibers (ODF) in the sperm flagella, accompanied by a consistent absence of central pairs (CP). The knockout of Ccdc189 resulted in oligo-astheno-teratozoospermia, which is characterized by low sperm count and reduced sperm motility and abnormal morphology. Furthermore, we identified poly(A)-binding protein cytoplasmic 1 (PABPC1) and PABPC2 as interacting proteins with CCDC189. These proteins belong to the PABP family and are involved in regulating mRNA translational activity in spermatogenic cells by specifically binding to poly(A) tails at the 3' ends of mRNAs.</p>\",\"PeriodicalId\":8965,\"journal\":{\"name\":\"Biology of Reproduction\",\"volume\":\" \",\"pages\":\"800-814\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biology of Reproduction\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/biolre/ioae112\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"REPRODUCTIVE BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology of Reproduction","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/biolre/ioae112","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"REPRODUCTIVE BIOLOGY","Score":null,"Total":0}
CCDC189 depletion leads to oligo-astheno-teratozoospermia and male infertility in mice†.
In male reproductive system, proteins containing the coiled-coil domain (CCDC) are predominantly expressed in specific regions including the testis, epididymis, seminal vesicle, and prostate. They play a vital role in centriole formation, sperm motility and flagellar development in male gametes. Despite being highly expressed in the testis, the exact physiological function of the coiled-coil domain-containing 189 (Ccdc189) gene remain largely unclear. Our research provides a comprehensive and detailed investigation into the localization of CCDC189 protein within the testis seminiferous tubules. CCDC189 specifically expressed in spermatocytes, round spermatids, and elongating spermatids in mouse testis. The deletion of Ccdc189 in mouse leads to male infertility, characterized by significantly reduced sperm counts and motility. Abnormally shaped spermatozoa with irregular tails, exhibiting shortened and twisted morphology, were observed in the seminiferous tubules. Electron microscopy revealed disordered and missing peripheral microtubule doublets (MTD) and outer dense fibers (ODF) in the sperm flagella, accompanied by a consistent absence of central pairs (CP). The knockout of Ccdc189 resulted in oligo-astheno-teratozoospermia, which is characterized by low sperm count and reduced sperm motility and abnormal morphology. Furthermore, we identified poly(A)-binding protein cytoplasmic 1 (PABPC1) and PABPC2 as interacting proteins with CCDC189. These proteins belong to the PABP family and are involved in regulating mRNA translational activity in spermatogenic cells by specifically binding to poly(A) tails at the 3' ends of mRNAs.
期刊介绍:
Biology of Reproduction (BOR) is the official journal of the Society for the Study of Reproduction and publishes original research on a broad range of topics in the field of reproductive biology, as well as reviews on topics of current importance or controversy. BOR is consistently one of the most highly cited journals publishing original research in the field of reproductive biology.