Xiu-Heng Wang, Zhi-Hong Ning, Zhong Xie, Yun Ou, Jia-Yang Yang, Yun-Xi Liu, Hong Huang, Hui-Fang Tang, Zhi-Sheng Jiang, Heng-Jing Hu
{"title":"SIRT3/AMPK 信号通路调节脂质代谢并改善对达尔盐敏感大鼠心房颤动的易感性。","authors":"Xiu-Heng Wang, Zhi-Hong Ning, Zhong Xie, Yun Ou, Jia-Yang Yang, Yun-Xi Liu, Hong Huang, Hui-Fang Tang, Zhi-Sheng Jiang, Heng-Jing Hu","doi":"10.1093/ajh/hpae091","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Hypertension may result in atrial fibrillation (AF) and lipid metabolism disorders. The Sirtuins3 (SIRT3)/AMP-activated protein kinase (AMPK) signaling pathway has the capacity to regulate lipid metabolism disorders and the onset of AF. We hypothesize that the SIRT3/AMPK signaling pathway suppresses lipid metabolism disorders, thereby mitigating salt-sensitive hypertension (SSHT)-induced susceptibility to AF.</p><p><strong>Methods: </strong>The study involved 7-week-old male Dahl salt-sensitive that were fed either a high-salt diet (8% NaCl; DSH group) or a normal diet (0.3% NaCl; DSN group). Then DSH group was administered either oral metformin (MET, an AMPK agonist) or intraperitoneal injection of Honokiol (HK, a SIRT3 agonist). This experimental model allowed for the measurement of Systolic blood pressure (SBP), the expression levels of lipid metabolism-related biomarkers, pathological examination of atrial fibrosis, and lipid accumulation, as well as AF inducibility and AF duration.</p><p><strong>Results: </strong>DSH decrease SIRT3, phosphorylation-AMPK, and very long-chain acyl-CoA dehydrogenase, (VLCAD) expression, increased FASN and FABP4 expression and concentrations of free fatty acid and triglyceride, atrial fibrosis and lipid accumulation in atrial tissue, enhanced level of SBP, promoted AF induction rate and prolonged AF duration, which are blocked by MET and HK. Our results also showed that the degree of atrial fibrosis was negatively correlated with VLCAD expression, but positively correlated with the expression of FASN and FABP4.</p><p><strong>Conclusions: </strong>We have confirmed that a high-salt diet can result in hypertension, and associated atrial tissue lipid metabolism dysfunction. This condition is linked to the inhibition of the SIRT3/AMPK signaling pathway, which plays a significant role in the progression of susceptibility to AF in SSHT rats.</p>","PeriodicalId":7578,"journal":{"name":"American Journal of Hypertension","volume":" ","pages":"901-908"},"PeriodicalIF":3.2000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SIRT3/AMPK Signaling Pathway Regulates Lipid Metabolism and Improves Vulnerability to Atrial Fibrillation in Dahl Salt-Sensitive Rats.\",\"authors\":\"Xiu-Heng Wang, Zhi-Hong Ning, Zhong Xie, Yun Ou, Jia-Yang Yang, Yun-Xi Liu, Hong Huang, Hui-Fang Tang, Zhi-Sheng Jiang, Heng-Jing Hu\",\"doi\":\"10.1093/ajh/hpae091\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Hypertension may result in atrial fibrillation (AF) and lipid metabolism disorders. The Sirtuins3 (SIRT3)/AMP-activated protein kinase (AMPK) signaling pathway has the capacity to regulate lipid metabolism disorders and the onset of AF. We hypothesize that the SIRT3/AMPK signaling pathway suppresses lipid metabolism disorders, thereby mitigating salt-sensitive hypertension (SSHT)-induced susceptibility to AF.</p><p><strong>Methods: </strong>The study involved 7-week-old male Dahl salt-sensitive that were fed either a high-salt diet (8% NaCl; DSH group) or a normal diet (0.3% NaCl; DSN group). Then DSH group was administered either oral metformin (MET, an AMPK agonist) or intraperitoneal injection of Honokiol (HK, a SIRT3 agonist). This experimental model allowed for the measurement of Systolic blood pressure (SBP), the expression levels of lipid metabolism-related biomarkers, pathological examination of atrial fibrosis, and lipid accumulation, as well as AF inducibility and AF duration.</p><p><strong>Results: </strong>DSH decrease SIRT3, phosphorylation-AMPK, and very long-chain acyl-CoA dehydrogenase, (VLCAD) expression, increased FASN and FABP4 expression and concentrations of free fatty acid and triglyceride, atrial fibrosis and lipid accumulation in atrial tissue, enhanced level of SBP, promoted AF induction rate and prolonged AF duration, which are blocked by MET and HK. Our results also showed that the degree of atrial fibrosis was negatively correlated with VLCAD expression, but positively correlated with the expression of FASN and FABP4.</p><p><strong>Conclusions: </strong>We have confirmed that a high-salt diet can result in hypertension, and associated atrial tissue lipid metabolism dysfunction. This condition is linked to the inhibition of the SIRT3/AMPK signaling pathway, which plays a significant role in the progression of susceptibility to AF in SSHT rats.</p>\",\"PeriodicalId\":7578,\"journal\":{\"name\":\"American Journal of Hypertension\",\"volume\":\" \",\"pages\":\"901-908\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Hypertension\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/ajh/hpae091\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PERIPHERAL VASCULAR DISEASE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Hypertension","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/ajh/hpae091","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PERIPHERAL VASCULAR DISEASE","Score":null,"Total":0}
SIRT3/AMPK Signaling Pathway Regulates Lipid Metabolism and Improves Vulnerability to Atrial Fibrillation in Dahl Salt-Sensitive Rats.
Background: Hypertension may result in atrial fibrillation (AF) and lipid metabolism disorders. The Sirtuins3 (SIRT3)/AMP-activated protein kinase (AMPK) signaling pathway has the capacity to regulate lipid metabolism disorders and the onset of AF. We hypothesize that the SIRT3/AMPK signaling pathway suppresses lipid metabolism disorders, thereby mitigating salt-sensitive hypertension (SSHT)-induced susceptibility to AF.
Methods: The study involved 7-week-old male Dahl salt-sensitive that were fed either a high-salt diet (8% NaCl; DSH group) or a normal diet (0.3% NaCl; DSN group). Then DSH group was administered either oral metformin (MET, an AMPK agonist) or intraperitoneal injection of Honokiol (HK, a SIRT3 agonist). This experimental model allowed for the measurement of Systolic blood pressure (SBP), the expression levels of lipid metabolism-related biomarkers, pathological examination of atrial fibrosis, and lipid accumulation, as well as AF inducibility and AF duration.
Results: DSH decrease SIRT3, phosphorylation-AMPK, and very long-chain acyl-CoA dehydrogenase, (VLCAD) expression, increased FASN and FABP4 expression and concentrations of free fatty acid and triglyceride, atrial fibrosis and lipid accumulation in atrial tissue, enhanced level of SBP, promoted AF induction rate and prolonged AF duration, which are blocked by MET and HK. Our results also showed that the degree of atrial fibrosis was negatively correlated with VLCAD expression, but positively correlated with the expression of FASN and FABP4.
Conclusions: We have confirmed that a high-salt diet can result in hypertension, and associated atrial tissue lipid metabolism dysfunction. This condition is linked to the inhibition of the SIRT3/AMPK signaling pathway, which plays a significant role in the progression of susceptibility to AF in SSHT rats.
期刊介绍:
The American Journal of Hypertension is a monthly, peer-reviewed journal that provides a forum for scientific inquiry of the highest standards in the field of hypertension and related cardiovascular disease. The journal publishes high-quality original research and review articles on basic sciences, molecular biology, clinical and experimental hypertension, cardiology, epidemiology, pediatric hypertension, endocrinology, neurophysiology, and nephrology.