Honghao Li , Dongqing Su , Xinpeng Zhang , Yuanyuan He , Xu Luo , Yuqiang Xiong , Min Zou , Huiyan Wei , Shaoran Wen , Qilemuge Xi , Yongchun Zuo , Lei Yang
{"title":"利用血常规数据对糖尿病患者进行基于机器学习的预测。","authors":"Honghao Li , Dongqing Su , Xinpeng Zhang , Yuanyuan He , Xu Luo , Yuqiang Xiong , Min Zou , Huiyan Wei , Shaoran Wen , Qilemuge Xi , Yongchun Zuo , Lei Yang","doi":"10.1016/j.ymeth.2024.07.001","DOIUrl":null,"url":null,"abstract":"<div><p>Diabetes stands as one of the most prevalent chronic diseases globally. The conventional methods for diagnosing diabetes are frequently overlooked until individuals manifest noticeable symptoms of the condition. This study aimed to address this gap by collecting comprehensive datasets, including 1000 instances of blood routine data from diabetes patients and an equivalent dataset from healthy individuals. To differentiate diabetes patients from their healthy counterparts, a computational framework was established, encompassing eXtreme Gradient Boosting (XGBoost), random forest, support vector machine, and elastic net algorithms. Notably, the XGBoost model emerged as the most effective, exhibiting superior predictive results with an area under the receiver operating characteristic curve (AUC) of 99.90% in the training set and 98.51% in the testing set. Moreover, the model showcased commendable performance during external validation, achieving an overall accuracy of 81.54%. The probability generated by the model serves as a risk score for diabetes susceptibility. Further interpretability was achieved through the utilization of the Shapley additive explanations (SHAP) algorithm, identifying pivotal indicators such as mean corpuscular hemoglobin concentration (MCHC), lymphocyte ratio (LY%), standard deviation of red blood cell distribution width (RDW-SD), and mean corpuscular hemoglobin (MCH). This enhances our understanding of the predictive mechanisms underlying diabetes. To facilitate the application in clinical and real-life settings, a nomogram was created based on the logistic regression algorithm, which can provide a preliminary assessment of the likelihood of an individual having diabetes. Overall, this research contributes valuable insights into the predictive modeling of diabetes, offering potential applications in clinical practice for more effective and timely diagnoses.</p></div>","PeriodicalId":390,"journal":{"name":"Methods","volume":"229 ","pages":"Pages 156-162"},"PeriodicalIF":4.2000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine learning-based prediction of diabetic patients using blood routine data\",\"authors\":\"Honghao Li , Dongqing Su , Xinpeng Zhang , Yuanyuan He , Xu Luo , Yuqiang Xiong , Min Zou , Huiyan Wei , Shaoran Wen , Qilemuge Xi , Yongchun Zuo , Lei Yang\",\"doi\":\"10.1016/j.ymeth.2024.07.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Diabetes stands as one of the most prevalent chronic diseases globally. The conventional methods for diagnosing diabetes are frequently overlooked until individuals manifest noticeable symptoms of the condition. This study aimed to address this gap by collecting comprehensive datasets, including 1000 instances of blood routine data from diabetes patients and an equivalent dataset from healthy individuals. To differentiate diabetes patients from their healthy counterparts, a computational framework was established, encompassing eXtreme Gradient Boosting (XGBoost), random forest, support vector machine, and elastic net algorithms. Notably, the XGBoost model emerged as the most effective, exhibiting superior predictive results with an area under the receiver operating characteristic curve (AUC) of 99.90% in the training set and 98.51% in the testing set. Moreover, the model showcased commendable performance during external validation, achieving an overall accuracy of 81.54%. The probability generated by the model serves as a risk score for diabetes susceptibility. Further interpretability was achieved through the utilization of the Shapley additive explanations (SHAP) algorithm, identifying pivotal indicators such as mean corpuscular hemoglobin concentration (MCHC), lymphocyte ratio (LY%), standard deviation of red blood cell distribution width (RDW-SD), and mean corpuscular hemoglobin (MCH). This enhances our understanding of the predictive mechanisms underlying diabetes. To facilitate the application in clinical and real-life settings, a nomogram was created based on the logistic regression algorithm, which can provide a preliminary assessment of the likelihood of an individual having diabetes. Overall, this research contributes valuable insights into the predictive modeling of diabetes, offering potential applications in clinical practice for more effective and timely diagnoses.</p></div>\",\"PeriodicalId\":390,\"journal\":{\"name\":\"Methods\",\"volume\":\"229 \",\"pages\":\"Pages 156-162\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methods\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1046202324001634\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1046202324001634","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Machine learning-based prediction of diabetic patients using blood routine data
Diabetes stands as one of the most prevalent chronic diseases globally. The conventional methods for diagnosing diabetes are frequently overlooked until individuals manifest noticeable symptoms of the condition. This study aimed to address this gap by collecting comprehensive datasets, including 1000 instances of blood routine data from diabetes patients and an equivalent dataset from healthy individuals. To differentiate diabetes patients from their healthy counterparts, a computational framework was established, encompassing eXtreme Gradient Boosting (XGBoost), random forest, support vector machine, and elastic net algorithms. Notably, the XGBoost model emerged as the most effective, exhibiting superior predictive results with an area under the receiver operating characteristic curve (AUC) of 99.90% in the training set and 98.51% in the testing set. Moreover, the model showcased commendable performance during external validation, achieving an overall accuracy of 81.54%. The probability generated by the model serves as a risk score for diabetes susceptibility. Further interpretability was achieved through the utilization of the Shapley additive explanations (SHAP) algorithm, identifying pivotal indicators such as mean corpuscular hemoglobin concentration (MCHC), lymphocyte ratio (LY%), standard deviation of red blood cell distribution width (RDW-SD), and mean corpuscular hemoglobin (MCH). This enhances our understanding of the predictive mechanisms underlying diabetes. To facilitate the application in clinical and real-life settings, a nomogram was created based on the logistic regression algorithm, which can provide a preliminary assessment of the likelihood of an individual having diabetes. Overall, this research contributes valuable insights into the predictive modeling of diabetes, offering potential applications in clinical practice for more effective and timely diagnoses.
期刊介绍:
Methods focuses on rapidly developing techniques in the experimental biological and medical sciences.
Each topical issue, organized by a guest editor who is an expert in the area covered, consists solely of invited quality articles by specialist authors, many of them reviews. Issues are devoted to specific technical approaches with emphasis on clear detailed descriptions of protocols that allow them to be reproduced easily. The background information provided enables researchers to understand the principles underlying the methods; other helpful sections include comparisons of alternative methods giving the advantages and disadvantages of particular methods, guidance on avoiding potential pitfalls, and suggestions for troubleshooting.