{"title":"用于应用和功能材料的蛋白质。","authors":"Antonio J Capezza, Raffaele Mezzenga","doi":"10.1021/acs.biomac.4c00884","DOIUrl":null,"url":null,"abstract":"<p><p>Shifting from a petroleum-based plastic society to a newer one built on circular economy principles requires maximizing the use of renewable resources and resolving the challenges that come with their use. Biopolymers have taken an important role in the design of biobased materials with functional properties, especially those derived from biomass available at a large scale. A number of recent studies have shown how proteins have a new dimension in developing functional materials, taking a step forward from their traditional use in food and biomedicine. Correlating the amino acidic profile of proteins at the nanoscale with their thermomechanical properties at the macroscale enables us to translate these precision polymers into a versatile design of materials, targeting large-scale applications such as foams and food packaging. Moreover, the advances in understanding proteins from a bottom-up perspective reached promising achievements for their use in applications that were not foreseen before, including biosensors, optoelectronics, and semiconductors.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":" ","pages":"4615-4618"},"PeriodicalIF":5.4000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Proteins for Applied and Functional Materials.\",\"authors\":\"Antonio J Capezza, Raffaele Mezzenga\",\"doi\":\"10.1021/acs.biomac.4c00884\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Shifting from a petroleum-based plastic society to a newer one built on circular economy principles requires maximizing the use of renewable resources and resolving the challenges that come with their use. Biopolymers have taken an important role in the design of biobased materials with functional properties, especially those derived from biomass available at a large scale. A number of recent studies have shown how proteins have a new dimension in developing functional materials, taking a step forward from their traditional use in food and biomedicine. Correlating the amino acidic profile of proteins at the nanoscale with their thermomechanical properties at the macroscale enables us to translate these precision polymers into a versatile design of materials, targeting large-scale applications such as foams and food packaging. Moreover, the advances in understanding proteins from a bottom-up perspective reached promising achievements for their use in applications that were not foreseen before, including biosensors, optoelectronics, and semiconductors.</p>\",\"PeriodicalId\":30,\"journal\":{\"name\":\"Biomacromolecules\",\"volume\":\" \",\"pages\":\"4615-4618\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomacromolecules\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.biomac.4c00884\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomacromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.biomac.4c00884","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/18 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Shifting from a petroleum-based plastic society to a newer one built on circular economy principles requires maximizing the use of renewable resources and resolving the challenges that come with their use. Biopolymers have taken an important role in the design of biobased materials with functional properties, especially those derived from biomass available at a large scale. A number of recent studies have shown how proteins have a new dimension in developing functional materials, taking a step forward from their traditional use in food and biomedicine. Correlating the amino acidic profile of proteins at the nanoscale with their thermomechanical properties at the macroscale enables us to translate these precision polymers into a versatile design of materials, targeting large-scale applications such as foams and food packaging. Moreover, the advances in understanding proteins from a bottom-up perspective reached promising achievements for their use in applications that were not foreseen before, including biosensors, optoelectronics, and semiconductors.
期刊介绍:
Biomacromolecules is a leading forum for the dissemination of cutting-edge research at the interface of polymer science and biology. Submissions to Biomacromolecules should contain strong elements of innovation in terms of macromolecular design, synthesis and characterization, or in the application of polymer materials to biology and medicine.
Topics covered by Biomacromolecules include, but are not exclusively limited to: sustainable polymers, polymers based on natural and renewable resources, degradable polymers, polymer conjugates, polymeric drugs, polymers in biocatalysis, biomacromolecular assembly, biomimetic polymers, polymer-biomineral hybrids, biomimetic-polymer processing, polymer recycling, bioactive polymer surfaces, original polymer design for biomedical applications such as immunotherapy, drug delivery, gene delivery, antimicrobial applications, diagnostic imaging and biosensing, polymers in tissue engineering and regenerative medicine, polymeric scaffolds and hydrogels for cell culture and delivery.