Luis Victor Torres Merino , Christopher E. Petoukhoff , Oleksandr Matiash , Anand Selvin Subbiah , Carolina Villamil Franco , Pia Dally , Badri Vishal , Sofiia Kosar , Diego Rosas Villalva , Vladyslav Hnapovskyi , Esma Ugur , Sahil Shah , Francisco Peña Camargo , Orestis Karalis , Hannes Hempel , Igal Levine , Rakesh R. Pradhan , Suzana Kralj , Nikhil Kalasariya , Maxime Babics , Stefaan De Wolf
{"title":"空穴收集界面价带能量排列对宽带隙过氧化物太阳能电池光稳定性的影响","authors":"Luis Victor Torres Merino , Christopher E. Petoukhoff , Oleksandr Matiash , Anand Selvin Subbiah , Carolina Villamil Franco , Pia Dally , Badri Vishal , Sofiia Kosar , Diego Rosas Villalva , Vladyslav Hnapovskyi , Esma Ugur , Sahil Shah , Francisco Peña Camargo , Orestis Karalis , Hannes Hempel , Igal Levine , Rakesh R. Pradhan , Suzana Kralj , Nikhil Kalasariya , Maxime Babics , Stefaan De Wolf","doi":"10.1016/j.joule.2024.06.017","DOIUrl":null,"url":null,"abstract":"<div><p><span>This work discusses the need to enhance charge carrier collection to minimize halide<span> segregation in wide band-gap (WBG) perovskites. Here, we systematically elucidate the impact of </span></span>valence band<span> maximum (VBM) offsets and energetic<span><span><span> barriers formed at the hole transport layer (HTL)/perovskite interface on charge accumulation, its influence on halide segregation, and ultimately on </span>perovskite solar cell<span> (PSC) long-term photostability. To this end, we precisely tune the VBM-HTL energetic levels by employing blends of self-assembled monolayers (SAMs; MeO-2PACz and Br-2PACz) to fabricate customized HTLs for PSCs with three different WBG perovskite photoabsorbers (1.69, 1.81, and 2.00 eV), commonly used in various tandem configurations. We find that optimized energetic alignment at the SAM HTL/perovskite interface significantly enhances the long-term photostability of the WBG PSCs. Our results show that photostability of devices can be predicted when comparing HTL/perovskite interfaces using photoluminescence’s evolution and transient surface </span></span>photovoltage spectroscopies of half-stacks (glass/metal oxide/HTL/perovskite) in correlation with halide segregation.</span></span></p></div>","PeriodicalId":343,"journal":{"name":"Joule","volume":"8 9","pages":"Pages 2585-2606"},"PeriodicalIF":38.6000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of the valence band energy alignment at the hole-collecting interface on the photostability of wide band-gap perovskite solar cells\",\"authors\":\"Luis Victor Torres Merino , Christopher E. Petoukhoff , Oleksandr Matiash , Anand Selvin Subbiah , Carolina Villamil Franco , Pia Dally , Badri Vishal , Sofiia Kosar , Diego Rosas Villalva , Vladyslav Hnapovskyi , Esma Ugur , Sahil Shah , Francisco Peña Camargo , Orestis Karalis , Hannes Hempel , Igal Levine , Rakesh R. Pradhan , Suzana Kralj , Nikhil Kalasariya , Maxime Babics , Stefaan De Wolf\",\"doi\":\"10.1016/j.joule.2024.06.017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>This work discusses the need to enhance charge carrier collection to minimize halide<span> segregation in wide band-gap (WBG) perovskites. Here, we systematically elucidate the impact of </span></span>valence band<span> maximum (VBM) offsets and energetic<span><span><span> barriers formed at the hole transport layer (HTL)/perovskite interface on charge accumulation, its influence on halide segregation, and ultimately on </span>perovskite solar cell<span> (PSC) long-term photostability. To this end, we precisely tune the VBM-HTL energetic levels by employing blends of self-assembled monolayers (SAMs; MeO-2PACz and Br-2PACz) to fabricate customized HTLs for PSCs with three different WBG perovskite photoabsorbers (1.69, 1.81, and 2.00 eV), commonly used in various tandem configurations. We find that optimized energetic alignment at the SAM HTL/perovskite interface significantly enhances the long-term photostability of the WBG PSCs. Our results show that photostability of devices can be predicted when comparing HTL/perovskite interfaces using photoluminescence’s evolution and transient surface </span></span>photovoltage spectroscopies of half-stacks (glass/metal oxide/HTL/perovskite) in correlation with halide segregation.</span></span></p></div>\",\"PeriodicalId\":343,\"journal\":{\"name\":\"Joule\",\"volume\":\"8 9\",\"pages\":\"Pages 2585-2606\"},\"PeriodicalIF\":38.6000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Joule\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2542435124002939\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Joule","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542435124002939","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Impact of the valence band energy alignment at the hole-collecting interface on the photostability of wide band-gap perovskite solar cells
This work discusses the need to enhance charge carrier collection to minimize halide segregation in wide band-gap (WBG) perovskites. Here, we systematically elucidate the impact of valence band maximum (VBM) offsets and energetic barriers formed at the hole transport layer (HTL)/perovskite interface on charge accumulation, its influence on halide segregation, and ultimately on perovskite solar cell (PSC) long-term photostability. To this end, we precisely tune the VBM-HTL energetic levels by employing blends of self-assembled monolayers (SAMs; MeO-2PACz and Br-2PACz) to fabricate customized HTLs for PSCs with three different WBG perovskite photoabsorbers (1.69, 1.81, and 2.00 eV), commonly used in various tandem configurations. We find that optimized energetic alignment at the SAM HTL/perovskite interface significantly enhances the long-term photostability of the WBG PSCs. Our results show that photostability of devices can be predicted when comparing HTL/perovskite interfaces using photoluminescence’s evolution and transient surface photovoltage spectroscopies of half-stacks (glass/metal oxide/HTL/perovskite) in correlation with halide segregation.
期刊介绍:
Joule is a sister journal to Cell that focuses on research, analysis, and ideas related to sustainable energy. It aims to address the global challenge of the need for more sustainable energy solutions. Joule is a forward-looking journal that bridges disciplines and scales of energy research. It connects researchers and analysts working on scientific, technical, economic, policy, and social challenges related to sustainable energy. The journal covers a wide range of energy research, from fundamental laboratory studies on energy conversion and storage to global-level analysis. Joule aims to highlight and amplify the implications, challenges, and opportunities of novel energy research for different groups in the field.