Mark A. Brzezinski, Leah Johnson, Margaret Estapa, Samantha Clevenger, Montserrat Roca-Martí, Elisa Romanelli, Kristen N. Buck, Bethany D. Jenkins, Janice L. Jones
{"title":"出口期间北大西洋春季浮游植物绽放硅藻阶段消亡后维持二氧化硅生产的物理机制","authors":"Mark A. Brzezinski, Leah Johnson, Margaret Estapa, Samantha Clevenger, Montserrat Roca-Martí, Elisa Romanelli, Kristen N. Buck, Bethany D. Jenkins, Janice L. Jones","doi":"10.1029/2023GB008048","DOIUrl":null,"url":null,"abstract":"<p>Each spring, the North Atlantic experiences one of the largest open-ocean phytoplankton blooms in the global ocean. Diatoms often dominate the initial phase of the bloom with succession driven by exhaustion of silicic acid. The North Atlantic was sampled over 3.5 weeks in spring 2021 following the demise of the main diatom bloom, allowing mechanisms that sustain continued diatom contributions to be examined. Diatom biomass was initially relatively high with biogenic silica concentrations up to 2.25 μmol Si L<sup>−1</sup>. A low initial silicic acid concentration of 0.1–0.3 μM imposed severe Si limitation of silica production and likely limited the diatom growth rate. Four storms over the next 3.5 weeks entrained silicic acid into the mixed layer, relieving growth limitation, but uptake limitation persisted. Silica production was modest and dominated by the >5.0 μm size fraction although specific rates were highest in the 0.6–5.0 μm size fraction over most of the cruise. Silica dissolution averaged 68% of silica production. The resupply of silicic acid via storm entrainment and silica dissolution supported a cumulative post-bloom silica production that was 32% of that estimated during the main bloom event. Diatoms contributed significantly to new and to primary production after the initial bloom, possibly dominating both. Diatom contribution to organic-carbon export was also significant at 40%–70%. Thus, diatoms can significantly contribute to regional biogeochemistry following initial silicic acid depletion, but that contribution relies on physical processes that resupply the nutrient to surface waters.</p>","PeriodicalId":12729,"journal":{"name":"Global Biogeochemical Cycles","volume":"38 7","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023GB008048","citationCount":"0","resultStr":"{\"title\":\"Physical Mechanisms Sustaining Silica Production Following the Demise of the Diatom Phase of the North Atlantic Spring Phytoplankton Bloom During EXPORTS\",\"authors\":\"Mark A. Brzezinski, Leah Johnson, Margaret Estapa, Samantha Clevenger, Montserrat Roca-Martí, Elisa Romanelli, Kristen N. Buck, Bethany D. Jenkins, Janice L. Jones\",\"doi\":\"10.1029/2023GB008048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Each spring, the North Atlantic experiences one of the largest open-ocean phytoplankton blooms in the global ocean. Diatoms often dominate the initial phase of the bloom with succession driven by exhaustion of silicic acid. The North Atlantic was sampled over 3.5 weeks in spring 2021 following the demise of the main diatom bloom, allowing mechanisms that sustain continued diatom contributions to be examined. Diatom biomass was initially relatively high with biogenic silica concentrations up to 2.25 μmol Si L<sup>−1</sup>. A low initial silicic acid concentration of 0.1–0.3 μM imposed severe Si limitation of silica production and likely limited the diatom growth rate. Four storms over the next 3.5 weeks entrained silicic acid into the mixed layer, relieving growth limitation, but uptake limitation persisted. Silica production was modest and dominated by the >5.0 μm size fraction although specific rates were highest in the 0.6–5.0 μm size fraction over most of the cruise. Silica dissolution averaged 68% of silica production. The resupply of silicic acid via storm entrainment and silica dissolution supported a cumulative post-bloom silica production that was 32% of that estimated during the main bloom event. Diatoms contributed significantly to new and to primary production after the initial bloom, possibly dominating both. Diatom contribution to organic-carbon export was also significant at 40%–70%. Thus, diatoms can significantly contribute to regional biogeochemistry following initial silicic acid depletion, but that contribution relies on physical processes that resupply the nutrient to surface waters.</p>\",\"PeriodicalId\":12729,\"journal\":{\"name\":\"Global Biogeochemical Cycles\",\"volume\":\"38 7\",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023GB008048\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global Biogeochemical Cycles\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2023GB008048\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Biogeochemical Cycles","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2023GB008048","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Physical Mechanisms Sustaining Silica Production Following the Demise of the Diatom Phase of the North Atlantic Spring Phytoplankton Bloom During EXPORTS
Each spring, the North Atlantic experiences one of the largest open-ocean phytoplankton blooms in the global ocean. Diatoms often dominate the initial phase of the bloom with succession driven by exhaustion of silicic acid. The North Atlantic was sampled over 3.5 weeks in spring 2021 following the demise of the main diatom bloom, allowing mechanisms that sustain continued diatom contributions to be examined. Diatom biomass was initially relatively high with biogenic silica concentrations up to 2.25 μmol Si L−1. A low initial silicic acid concentration of 0.1–0.3 μM imposed severe Si limitation of silica production and likely limited the diatom growth rate. Four storms over the next 3.5 weeks entrained silicic acid into the mixed layer, relieving growth limitation, but uptake limitation persisted. Silica production was modest and dominated by the >5.0 μm size fraction although specific rates were highest in the 0.6–5.0 μm size fraction over most of the cruise. Silica dissolution averaged 68% of silica production. The resupply of silicic acid via storm entrainment and silica dissolution supported a cumulative post-bloom silica production that was 32% of that estimated during the main bloom event. Diatoms contributed significantly to new and to primary production after the initial bloom, possibly dominating both. Diatom contribution to organic-carbon export was also significant at 40%–70%. Thus, diatoms can significantly contribute to regional biogeochemistry following initial silicic acid depletion, but that contribution relies on physical processes that resupply the nutrient to surface waters.
期刊介绍:
Global Biogeochemical Cycles (GBC) features research on regional to global biogeochemical interactions, as well as more local studies that demonstrate fundamental implications for biogeochemical processing at regional or global scales. Published papers draw on a wide array of methods and knowledge and extend in time from the deep geologic past to recent historical and potential future interactions. This broad scope includes studies that elucidate human activities as interactive components of biogeochemical cycles and physical Earth Systems including climate. Authors are required to make their work accessible to a broad interdisciplinary range of scientists.