非耦合双稳态合作雷达网络中的星座估计、相干信号处理和多视角成像

IF 6.9 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Patrick Fenske;Tobias Koegel;Roghayeh Ghasemi;Martin Vossiek
{"title":"非耦合双稳态合作雷达网络中的星座估计、相干信号处理和多视角成像","authors":"Patrick Fenske;Tobias Koegel;Roghayeh Ghasemi;Martin Vossiek","doi":"10.1109/JMW.2024.3393120","DOIUrl":null,"url":null,"abstract":"Cooperative radar networks are a promising technology in various areas, such as vehicle-to-infrastructure networks for automotive radar and radar remote sensing with UAVs. The use of widely distributed radar networks enables the detection of targets with complex scattering characteristics, as their coherent bistatic images are superior for forward scattering, and each monostatic image illuminates a scene from a different perspective. This work introduces a signal processing scheme that addresses two main challenges in this area: the coherent signal processing of uncoupled radar nodes and the self-localization of the nodes for radar image combination. A comprehensive signal model that incorporates time, frequency and phase incoherency is introduced. Based on this, an algorithm for constellation estimation, synchronization up to the carrier phase level, and multiperspective imaging is developed. The proposed approach is experimentally verified using commercially available \n<inline-formula><tex-math>$77 \\,\\mathrm{G}\\mathrm{Hz}$</tex-math></inline-formula>\n single-input/multiple-output radar nodes. The measurements for different radar constellations and various target scenes show a self-localization accuracy below \n<inline-formula><tex-math>$6 \\,\\mathrm{c}\\mathrm{m}$</tex-math></inline-formula>\n in range and below \n<inline-formula><tex-math>$2.5^{\\circ }$</tex-math></inline-formula>\n for the incident angles. The resulting images of various scenes clearly indicate an information gain compared to single monostatic images due to the combination of bistatic and multiperspective monostatic images.","PeriodicalId":93296,"journal":{"name":"IEEE journal of microwaves","volume":"4 3","pages":"486-500"},"PeriodicalIF":6.9000,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10523946","citationCount":"0","resultStr":"{\"title\":\"Constellation Estimation, Coherent Signal Processing, and Multiperspective Imaging in an Uncoupled Bistatic Cooperative Radar Network\",\"authors\":\"Patrick Fenske;Tobias Koegel;Roghayeh Ghasemi;Martin Vossiek\",\"doi\":\"10.1109/JMW.2024.3393120\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cooperative radar networks are a promising technology in various areas, such as vehicle-to-infrastructure networks for automotive radar and radar remote sensing with UAVs. The use of widely distributed radar networks enables the detection of targets with complex scattering characteristics, as their coherent bistatic images are superior for forward scattering, and each monostatic image illuminates a scene from a different perspective. This work introduces a signal processing scheme that addresses two main challenges in this area: the coherent signal processing of uncoupled radar nodes and the self-localization of the nodes for radar image combination. A comprehensive signal model that incorporates time, frequency and phase incoherency is introduced. Based on this, an algorithm for constellation estimation, synchronization up to the carrier phase level, and multiperspective imaging is developed. The proposed approach is experimentally verified using commercially available \\n<inline-formula><tex-math>$77 \\\\,\\\\mathrm{G}\\\\mathrm{Hz}$</tex-math></inline-formula>\\n single-input/multiple-output radar nodes. The measurements for different radar constellations and various target scenes show a self-localization accuracy below \\n<inline-formula><tex-math>$6 \\\\,\\\\mathrm{c}\\\\mathrm{m}$</tex-math></inline-formula>\\n in range and below \\n<inline-formula><tex-math>$2.5^{\\\\circ }$</tex-math></inline-formula>\\n for the incident angles. The resulting images of various scenes clearly indicate an information gain compared to single monostatic images due to the combination of bistatic and multiperspective monostatic images.\",\"PeriodicalId\":93296,\"journal\":{\"name\":\"IEEE journal of microwaves\",\"volume\":\"4 3\",\"pages\":\"486-500\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2024-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10523946\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE journal of microwaves\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10523946/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE journal of microwaves","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10523946/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

合作雷达网络在汽车雷达的车对基础设施网络和无人机雷达遥感等多个领域都是一项前景广阔的技术。使用广泛分布的雷达网络可以探测具有复杂散射特性的目标,因为它们的相干双静态图像在前向散射方面具有优势,而且每个单静态图像从不同角度照亮一个场景。这项研究提出了一种信号处理方案,以解决这一领域的两大难题:非耦合雷达节点的相干信号处理和雷达图像组合节点的自定位。该方案引入了一个包含时间、频率和相位不一致性的综合信号模型。在此基础上,开发了一种用于星座估计、载波相位级同步和多视角成像的算法。所提出的方法使用市售的 $77 \,\mathrm{G}\mathrm{Hz}$ 单输入/多输出雷达节点进行了实验验证。对不同雷达星座和各种目标场景的测量结果表明,自定位精度的范围低于 $6 \\mathrm{c}\mathrm{m}$ ,入射角度低于 $2.5^{circ}$。由于双静态和多视角单静态图像的结合,与单一单静态图像相比,各种场景的图像清晰显示出信息增益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Constellation Estimation, Coherent Signal Processing, and Multiperspective Imaging in an Uncoupled Bistatic Cooperative Radar Network
Cooperative radar networks are a promising technology in various areas, such as vehicle-to-infrastructure networks for automotive radar and radar remote sensing with UAVs. The use of widely distributed radar networks enables the detection of targets with complex scattering characteristics, as their coherent bistatic images are superior for forward scattering, and each monostatic image illuminates a scene from a different perspective. This work introduces a signal processing scheme that addresses two main challenges in this area: the coherent signal processing of uncoupled radar nodes and the self-localization of the nodes for radar image combination. A comprehensive signal model that incorporates time, frequency and phase incoherency is introduced. Based on this, an algorithm for constellation estimation, synchronization up to the carrier phase level, and multiperspective imaging is developed. The proposed approach is experimentally verified using commercially available $77 \,\mathrm{G}\mathrm{Hz}$ single-input/multiple-output radar nodes. The measurements for different radar constellations and various target scenes show a self-localization accuracy below $6 \,\mathrm{c}\mathrm{m}$ in range and below $2.5^{\circ }$ for the incident angles. The resulting images of various scenes clearly indicate an information gain compared to single monostatic images due to the combination of bistatic and multiperspective monostatic images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.70
自引率
0.00%
发文量
0
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信