{"title":"一种基于模型的方法,用于对物联网系统中的能量采集架构进行形式验证和性能评估:长期医疗保健应用案例研究","authors":"Imene Ben Hafaiedh , Afef Gafsi , Mohamed Yassine Yahyaoui , Yasmine Aouinette","doi":"10.1016/j.simpat.2024.102990","DOIUrl":null,"url":null,"abstract":"<div><p>Energy harvesting plays a significant role in the Internet of Things (IoT). Indeed, although numerous approaches exist to limit the system’s power consumption, the energy provided by the battery remains constrained, thereby limiting the system’s lifetime. Energy harvesting represents an interesting technique that allows a set of devices in an IoT architecture to operate for a potentially infinite time without the need for battery replacement or recharge. This work presents a formal modeling framework for the performance evaluation of energy harvesting architectures and strategies in IoT systems. We present a model-based approach using UPPAAL to model and analyze IoT device lifetimes and capture the energy-related behavior of nodes and various energy harvesters. Furthermore, the model is calibrated using measurements acquired from real-life IoT applications to demonstrate the effectiveness of the proposed model and its ability to investigate various energy-related aspects.</p></div>","PeriodicalId":49518,"journal":{"name":"Simulation Modelling Practice and Theory","volume":"136 ","pages":"Article 102990"},"PeriodicalIF":3.5000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A model-based approach for formal verification and performance evaluation of energy harvesting architectures in IoT systems: A case study of a long-term healthcare application\",\"authors\":\"Imene Ben Hafaiedh , Afef Gafsi , Mohamed Yassine Yahyaoui , Yasmine Aouinette\",\"doi\":\"10.1016/j.simpat.2024.102990\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Energy harvesting plays a significant role in the Internet of Things (IoT). Indeed, although numerous approaches exist to limit the system’s power consumption, the energy provided by the battery remains constrained, thereby limiting the system’s lifetime. Energy harvesting represents an interesting technique that allows a set of devices in an IoT architecture to operate for a potentially infinite time without the need for battery replacement or recharge. This work presents a formal modeling framework for the performance evaluation of energy harvesting architectures and strategies in IoT systems. We present a model-based approach using UPPAAL to model and analyze IoT device lifetimes and capture the energy-related behavior of nodes and various energy harvesters. Furthermore, the model is calibrated using measurements acquired from real-life IoT applications to demonstrate the effectiveness of the proposed model and its ability to investigate various energy-related aspects.</p></div>\",\"PeriodicalId\":49518,\"journal\":{\"name\":\"Simulation Modelling Practice and Theory\",\"volume\":\"136 \",\"pages\":\"Article 102990\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Simulation Modelling Practice and Theory\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1569190X24001047\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Simulation Modelling Practice and Theory","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569190X24001047","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
A model-based approach for formal verification and performance evaluation of energy harvesting architectures in IoT systems: A case study of a long-term healthcare application
Energy harvesting plays a significant role in the Internet of Things (IoT). Indeed, although numerous approaches exist to limit the system’s power consumption, the energy provided by the battery remains constrained, thereby limiting the system’s lifetime. Energy harvesting represents an interesting technique that allows a set of devices in an IoT architecture to operate for a potentially infinite time without the need for battery replacement or recharge. This work presents a formal modeling framework for the performance evaluation of energy harvesting architectures and strategies in IoT systems. We present a model-based approach using UPPAAL to model and analyze IoT device lifetimes and capture the energy-related behavior of nodes and various energy harvesters. Furthermore, the model is calibrated using measurements acquired from real-life IoT applications to demonstrate the effectiveness of the proposed model and its ability to investigate various energy-related aspects.
期刊介绍:
The journal Simulation Modelling Practice and Theory provides a forum for original, high-quality papers dealing with any aspect of systems simulation and modelling.
The journal aims at being a reference and a powerful tool to all those professionally active and/or interested in the methods and applications of simulation. Submitted papers will be peer reviewed and must significantly contribute to modelling and simulation in general or use modelling and simulation in application areas.
Paper submission is solicited on:
• theoretical aspects of modelling and simulation including formal modelling, model-checking, random number generators, sensitivity analysis, variance reduction techniques, experimental design, meta-modelling, methods and algorithms for validation and verification, selection and comparison procedures etc.;
• methodology and application of modelling and simulation in any area, including computer systems, networks, real-time and embedded systems, mobile and intelligent agents, manufacturing and transportation systems, management, engineering, biomedical engineering, economics, ecology and environment, education, transaction handling, etc.;
• simulation languages and environments including those, specific to distributed computing, grid computing, high performance computers or computer networks, etc.;
• distributed and real-time simulation, simulation interoperability;
• tools for high performance computing simulation, including dedicated architectures and parallel computing.