具有大阶或二阶二叉图中的细分图

IF 1 3区 数学 Q1 MATHEMATICS
Lucas Picasarri-Arrieta, Clément Rambaud
{"title":"具有大阶或二阶二叉图中的细分图","authors":"Lucas Picasarri-Arrieta,&nbsp;Clément Rambaud","doi":"10.1016/j.ejc.2024.104022","DOIUrl":null,"url":null,"abstract":"<div><p>Aboulker et al. proved that a digraph with large enough dichromatic number contains any fixed digraph as a subdivision. The dichromatic number of a digraph is the smallest order of a partition of its vertex set into acyclic induced subdigraphs. A digraph is dicritical if the removal of any arc or vertex decreases its dichromatic number. In this paper we give sufficient conditions on a dicritical digraph of large order or large directed girth to contain a given digraph as a subdivision. In particular, we prove that (i) for every integers <span><math><mrow><mi>k</mi><mo>,</mo><mi>ℓ</mi></mrow></math></span>, large enough dicritical digraphs with dichromatic number <span><math><mi>k</mi></math></span> contain an orientation of a cycle with at least <span><math><mi>ℓ</mi></math></span> vertices; (ii) there are functions <span><math><mrow><mi>f</mi><mo>,</mo><mi>g</mi></mrow></math></span> such that for every subdivision <span><math><msup><mrow><mi>F</mi></mrow><mrow><mo>∗</mo></mrow></msup></math></span> of a digraph <span><math><mi>F</mi></math></span>, digraphs with directed girth at least <span><math><mrow><mi>f</mi><mrow><mo>(</mo><msup><mrow><mi>F</mi></mrow><mrow><mo>∗</mo></mrow></msup><mo>)</mo></mrow></mrow></math></span> and dichromatic number at least <span><math><mrow><mi>g</mi><mrow><mo>(</mo><mi>F</mi><mo>)</mo></mrow></mrow></math></span> contain a subdivision of <span><math><msup><mrow><mi>F</mi></mrow><mrow><mo>∗</mo></mrow></msup></math></span>, and if <span><math><mi>F</mi></math></span> is a tree, then <span><math><mrow><mi>g</mi><mrow><mo>(</mo><mi>F</mi><mo>)</mo></mrow><mo>=</mo><mrow><mo>|</mo><mi>V</mi><mrow><mo>(</mo><mi>F</mi><mo>)</mo></mrow><mo>|</mo></mrow></mrow></math></span>; (iii) there is a function <span><math><mi>f</mi></math></span> such that for every subdivision <span><math><msup><mrow><mi>F</mi></mrow><mrow><mo>∗</mo></mrow></msup></math></span> of <span><math><mrow><mi>T</mi><msub><mrow><mi>T</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow></math></span> (the transitive tournament on three vertices), digraphs with directed girth at least <span><math><mrow><mi>f</mi><mrow><mo>(</mo><msup><mrow><mi>F</mi></mrow><mrow><mo>∗</mo></mrow></msup><mo>)</mo></mrow></mrow></math></span> and minimum out-degree at least 2 contain <span><math><msup><mrow><mi>F</mi></mrow><mrow><mo>∗</mo></mrow></msup></math></span> as a subdivision.</p></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Subdivisions in dicritical digraphs with large order or digirth\",\"authors\":\"Lucas Picasarri-Arrieta,&nbsp;Clément Rambaud\",\"doi\":\"10.1016/j.ejc.2024.104022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Aboulker et al. proved that a digraph with large enough dichromatic number contains any fixed digraph as a subdivision. The dichromatic number of a digraph is the smallest order of a partition of its vertex set into acyclic induced subdigraphs. A digraph is dicritical if the removal of any arc or vertex decreases its dichromatic number. In this paper we give sufficient conditions on a dicritical digraph of large order or large directed girth to contain a given digraph as a subdivision. In particular, we prove that (i) for every integers <span><math><mrow><mi>k</mi><mo>,</mo><mi>ℓ</mi></mrow></math></span>, large enough dicritical digraphs with dichromatic number <span><math><mi>k</mi></math></span> contain an orientation of a cycle with at least <span><math><mi>ℓ</mi></math></span> vertices; (ii) there are functions <span><math><mrow><mi>f</mi><mo>,</mo><mi>g</mi></mrow></math></span> such that for every subdivision <span><math><msup><mrow><mi>F</mi></mrow><mrow><mo>∗</mo></mrow></msup></math></span> of a digraph <span><math><mi>F</mi></math></span>, digraphs with directed girth at least <span><math><mrow><mi>f</mi><mrow><mo>(</mo><msup><mrow><mi>F</mi></mrow><mrow><mo>∗</mo></mrow></msup><mo>)</mo></mrow></mrow></math></span> and dichromatic number at least <span><math><mrow><mi>g</mi><mrow><mo>(</mo><mi>F</mi><mo>)</mo></mrow></mrow></math></span> contain a subdivision of <span><math><msup><mrow><mi>F</mi></mrow><mrow><mo>∗</mo></mrow></msup></math></span>, and if <span><math><mi>F</mi></math></span> is a tree, then <span><math><mrow><mi>g</mi><mrow><mo>(</mo><mi>F</mi><mo>)</mo></mrow><mo>=</mo><mrow><mo>|</mo><mi>V</mi><mrow><mo>(</mo><mi>F</mi><mo>)</mo></mrow><mo>|</mo></mrow></mrow></math></span>; (iii) there is a function <span><math><mi>f</mi></math></span> such that for every subdivision <span><math><msup><mrow><mi>F</mi></mrow><mrow><mo>∗</mo></mrow></msup></math></span> of <span><math><mrow><mi>T</mi><msub><mrow><mi>T</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow></math></span> (the transitive tournament on three vertices), digraphs with directed girth at least <span><math><mrow><mi>f</mi><mrow><mo>(</mo><msup><mrow><mi>F</mi></mrow><mrow><mo>∗</mo></mrow></msup><mo>)</mo></mrow></mrow></math></span> and minimum out-degree at least 2 contain <span><math><msup><mrow><mi>F</mi></mrow><mrow><mo>∗</mo></mrow></msup></math></span> as a subdivision.</p></div>\",\"PeriodicalId\":50490,\"journal\":{\"name\":\"European Journal of Combinatorics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0195669824001070\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669824001070","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

Aboulker 等人证明,二色数足够大的数字图包含任何固定数字图的子图。一个数图的二色数是将其顶点集划分为非循环诱导子数图的最小阶数。如果删除任何一个弧或顶点都会降低一个数图的二色数,那么这个数图就是二色数。在本文中,我们给出了大阶或大周长的二临界图包含给定图作为子图的充分条件。特别是,我们证明了 (i) 对于每一个整数 k,ℓ,二色数为 k 的足够大的二临界数图包含一个至少有 ℓ 个顶点的循环的定向;(ii) 有函数 f,g 使得对于数图 F 的每一个细分图 F∗,有向周长至少为 f(F∗)且二色数至少为 g(F) 的数图包含 F∗ 的一个细分图,且如果 F 是树,则 g(F)=|V(F)|;(iii) 存在这样一个函数 f:对于 TT3(三顶点上的反向锦标赛)的每一个细分图 F∗,有向周长至少为 f(F∗)且最小外度至少为 2 的数图都包含细分图 F∗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Subdivisions in dicritical digraphs with large order or digirth

Aboulker et al. proved that a digraph with large enough dichromatic number contains any fixed digraph as a subdivision. The dichromatic number of a digraph is the smallest order of a partition of its vertex set into acyclic induced subdigraphs. A digraph is dicritical if the removal of any arc or vertex decreases its dichromatic number. In this paper we give sufficient conditions on a dicritical digraph of large order or large directed girth to contain a given digraph as a subdivision. In particular, we prove that (i) for every integers k,, large enough dicritical digraphs with dichromatic number k contain an orientation of a cycle with at least vertices; (ii) there are functions f,g such that for every subdivision F of a digraph F, digraphs with directed girth at least f(F) and dichromatic number at least g(F) contain a subdivision of F, and if F is a tree, then g(F)=|V(F)|; (iii) there is a function f such that for every subdivision F of TT3 (the transitive tournament on three vertices), digraphs with directed girth at least f(F) and minimum out-degree at least 2 contain F as a subdivision.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
124
审稿时长
4-8 weeks
期刊介绍: The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信