不可分离的多维多分辨率小波:道格拉斯-拉赫福德方法

IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED
David Franklin , Jeffrey A. Hogan , Matthew K. Tam
{"title":"不可分离的多维多分辨率小波:道格拉斯-拉赫福德方法","authors":"David Franklin ,&nbsp;Jeffrey A. Hogan ,&nbsp;Matthew K. Tam","doi":"10.1016/j.acha.2024.101684","DOIUrl":null,"url":null,"abstract":"<div><p>After re-casting the wavelet construction problem as a feasibility problem with constraints arising from the requirements of compact support, smoothness and orthogonality, the Douglas–Rachford algorithm is employed in the search for multi-dimensional, non-separable, compactly supported, smooth, orthogonal, multiresolution wavelets in the case of translations along the integer lattice and isotropic dyadic dilations. An algorithm for the numerical construction of such wavelets is described. By applying the algorithm, new one-dimensional wavelets are produced as well as genuinely non-separable two-dimensional wavelets.</p></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"73 ","pages":"Article 101684"},"PeriodicalIF":2.6000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1063520324000617/pdfft?md5=5f9312281e421d0c1eb84ee1017dcee5&pid=1-s2.0-S1063520324000617-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Non-separable multidimensional multiresolution wavelets: A Douglas-Rachford approach\",\"authors\":\"David Franklin ,&nbsp;Jeffrey A. Hogan ,&nbsp;Matthew K. Tam\",\"doi\":\"10.1016/j.acha.2024.101684\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>After re-casting the wavelet construction problem as a feasibility problem with constraints arising from the requirements of compact support, smoothness and orthogonality, the Douglas–Rachford algorithm is employed in the search for multi-dimensional, non-separable, compactly supported, smooth, orthogonal, multiresolution wavelets in the case of translations along the integer lattice and isotropic dyadic dilations. An algorithm for the numerical construction of such wavelets is described. By applying the algorithm, new one-dimensional wavelets are produced as well as genuinely non-separable two-dimensional wavelets.</p></div>\",\"PeriodicalId\":55504,\"journal\":{\"name\":\"Applied and Computational Harmonic Analysis\",\"volume\":\"73 \",\"pages\":\"Article 101684\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1063520324000617/pdfft?md5=5f9312281e421d0c1eb84ee1017dcee5&pid=1-s2.0-S1063520324000617-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied and Computational Harmonic Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1063520324000617\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Harmonic Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1063520324000617","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在将小波构造问题重铸成一个可行性问题,并在其中加入由紧凑支撑、平滑性和正交性要求所产生的约束条件之后,在沿整数网格平移和各向同性二向扩张的情况下,采用道格拉斯-拉赫福德算法来寻找多维、不可分离、紧凑支撑、平滑、正交、多分辨率的小波。本文介绍了数值构造这种小波的算法。通过应用该算法,可以生成新的一维小波以及真正不可分离的二维小波。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-separable multidimensional multiresolution wavelets: A Douglas-Rachford approach

After re-casting the wavelet construction problem as a feasibility problem with constraints arising from the requirements of compact support, smoothness and orthogonality, the Douglas–Rachford algorithm is employed in the search for multi-dimensional, non-separable, compactly supported, smooth, orthogonal, multiresolution wavelets in the case of translations along the integer lattice and isotropic dyadic dilations. An algorithm for the numerical construction of such wavelets is described. By applying the algorithm, new one-dimensional wavelets are produced as well as genuinely non-separable two-dimensional wavelets.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied and Computational Harmonic Analysis
Applied and Computational Harmonic Analysis 物理-物理:数学物理
CiteScore
5.40
自引率
4.00%
发文量
67
审稿时长
22.9 weeks
期刊介绍: Applied and Computational Harmonic Analysis (ACHA) is an interdisciplinary journal that publishes high-quality papers in all areas of mathematical sciences related to the applied and computational aspects of harmonic analysis, with special emphasis on innovative theoretical development, methods, and algorithms, for information processing, manipulation, understanding, and so forth. The objectives of the journal are to chronicle the important publications in the rapidly growing field of data representation and analysis, to stimulate research in relevant interdisciplinary areas, and to provide a common link among mathematical, physical, and life scientists, as well as engineers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信