David Franklin , Jeffrey A. Hogan , Matthew K. Tam
{"title":"不可分离的多维多分辨率小波:道格拉斯-拉赫福德方法","authors":"David Franklin , Jeffrey A. Hogan , Matthew K. Tam","doi":"10.1016/j.acha.2024.101684","DOIUrl":null,"url":null,"abstract":"<div><p>After re-casting the wavelet construction problem as a feasibility problem with constraints arising from the requirements of compact support, smoothness and orthogonality, the Douglas–Rachford algorithm is employed in the search for multi-dimensional, non-separable, compactly supported, smooth, orthogonal, multiresolution wavelets in the case of translations along the integer lattice and isotropic dyadic dilations. An algorithm for the numerical construction of such wavelets is described. By applying the algorithm, new one-dimensional wavelets are produced as well as genuinely non-separable two-dimensional wavelets.</p></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"73 ","pages":"Article 101684"},"PeriodicalIF":2.6000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1063520324000617/pdfft?md5=5f9312281e421d0c1eb84ee1017dcee5&pid=1-s2.0-S1063520324000617-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Non-separable multidimensional multiresolution wavelets: A Douglas-Rachford approach\",\"authors\":\"David Franklin , Jeffrey A. Hogan , Matthew K. Tam\",\"doi\":\"10.1016/j.acha.2024.101684\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>After re-casting the wavelet construction problem as a feasibility problem with constraints arising from the requirements of compact support, smoothness and orthogonality, the Douglas–Rachford algorithm is employed in the search for multi-dimensional, non-separable, compactly supported, smooth, orthogonal, multiresolution wavelets in the case of translations along the integer lattice and isotropic dyadic dilations. An algorithm for the numerical construction of such wavelets is described. By applying the algorithm, new one-dimensional wavelets are produced as well as genuinely non-separable two-dimensional wavelets.</p></div>\",\"PeriodicalId\":55504,\"journal\":{\"name\":\"Applied and Computational Harmonic Analysis\",\"volume\":\"73 \",\"pages\":\"Article 101684\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1063520324000617/pdfft?md5=5f9312281e421d0c1eb84ee1017dcee5&pid=1-s2.0-S1063520324000617-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied and Computational Harmonic Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1063520324000617\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Harmonic Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1063520324000617","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Non-separable multidimensional multiresolution wavelets: A Douglas-Rachford approach
After re-casting the wavelet construction problem as a feasibility problem with constraints arising from the requirements of compact support, smoothness and orthogonality, the Douglas–Rachford algorithm is employed in the search for multi-dimensional, non-separable, compactly supported, smooth, orthogonal, multiresolution wavelets in the case of translations along the integer lattice and isotropic dyadic dilations. An algorithm for the numerical construction of such wavelets is described. By applying the algorithm, new one-dimensional wavelets are produced as well as genuinely non-separable two-dimensional wavelets.
期刊介绍:
Applied and Computational Harmonic Analysis (ACHA) is an interdisciplinary journal that publishes high-quality papers in all areas of mathematical sciences related to the applied and computational aspects of harmonic analysis, with special emphasis on innovative theoretical development, methods, and algorithms, for information processing, manipulation, understanding, and so forth. The objectives of the journal are to chronicle the important publications in the rapidly growing field of data representation and analysis, to stimulate research in relevant interdisciplinary areas, and to provide a common link among mathematical, physical, and life scientists, as well as engineers.