基于全局和局部特征提取的跌倒检测算法

IF 3.9 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Bin Li , Jiangjiao Li , Peng Wang
{"title":"基于全局和局部特征提取的跌倒检测算法","authors":"Bin Li ,&nbsp;Jiangjiao Li ,&nbsp;Peng Wang","doi":"10.1016/j.patrec.2024.07.003","DOIUrl":null,"url":null,"abstract":"<div><p>Falls have become one of the main causes of injury and death among the elderly. A high-accuracy fall detection method can effectively detect falls in the elderly, thereby reducing the probability of injury and mortality. This paper proposes a fall detection algorithm based on global and local feature extraction. Specifically, we design a dual-stream network, with one branch composed of a convolutional neural network and a regional attention module for extracting local features from images. The other branch consists of an improved Transformer for extracting global features from images. The local and global features are then fused using a feature fusion module for classification, enabling fall detection. Experimental results show that the proposed approach achieves accuracies of 99.55% and 99.75% when tested with UP-Fall Detection Dataset and Le2i Fall Detection Dataset.</p></div>","PeriodicalId":54638,"journal":{"name":"Pattern Recognition Letters","volume":"185 ","pages":"Pages 31-37"},"PeriodicalIF":3.9000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fall detection algorithm based on global and local feature extraction\",\"authors\":\"Bin Li ,&nbsp;Jiangjiao Li ,&nbsp;Peng Wang\",\"doi\":\"10.1016/j.patrec.2024.07.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Falls have become one of the main causes of injury and death among the elderly. A high-accuracy fall detection method can effectively detect falls in the elderly, thereby reducing the probability of injury and mortality. This paper proposes a fall detection algorithm based on global and local feature extraction. Specifically, we design a dual-stream network, with one branch composed of a convolutional neural network and a regional attention module for extracting local features from images. The other branch consists of an improved Transformer for extracting global features from images. The local and global features are then fused using a feature fusion module for classification, enabling fall detection. Experimental results show that the proposed approach achieves accuracies of 99.55% and 99.75% when tested with UP-Fall Detection Dataset and Le2i Fall Detection Dataset.</p></div>\",\"PeriodicalId\":54638,\"journal\":{\"name\":\"Pattern Recognition Letters\",\"volume\":\"185 \",\"pages\":\"Pages 31-37\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pattern Recognition Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S016786552400206X\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Recognition Letters","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016786552400206X","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

跌倒已成为老年人受伤和死亡的主要原因之一。高精度的跌倒检测方法可以有效检测老年人跌倒,从而降低受伤和死亡的概率。本文提出了一种基于全局和局部特征提取的跌倒检测算法。具体来说,我们设计了一个双流网络,其中一个分支由卷积神经网络和区域注意力模块组成,用于从图像中提取局部特征。另一个分支由改进的变换器组成,用于从图像中提取全局特征。然后使用特征融合模块将局部特征和全局特征进行融合分类,从而实现跌倒检测。实验结果表明,在使用 UP-Fall Detection Dataset 和 Le2i Fall Detection Dataset 进行测试时,拟议方法的准确率分别达到 99.55% 和 99.75%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fall detection algorithm based on global and local feature extraction

Falls have become one of the main causes of injury and death among the elderly. A high-accuracy fall detection method can effectively detect falls in the elderly, thereby reducing the probability of injury and mortality. This paper proposes a fall detection algorithm based on global and local feature extraction. Specifically, we design a dual-stream network, with one branch composed of a convolutional neural network and a regional attention module for extracting local features from images. The other branch consists of an improved Transformer for extracting global features from images. The local and global features are then fused using a feature fusion module for classification, enabling fall detection. Experimental results show that the proposed approach achieves accuracies of 99.55% and 99.75% when tested with UP-Fall Detection Dataset and Le2i Fall Detection Dataset.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Pattern Recognition Letters
Pattern Recognition Letters 工程技术-计算机:人工智能
CiteScore
12.40
自引率
5.90%
发文量
287
审稿时长
9.1 months
期刊介绍: Pattern Recognition Letters aims at rapid publication of concise articles of a broad interest in pattern recognition. Subject areas include all the current fields of interest represented by the Technical Committees of the International Association of Pattern Recognition, and other developing themes involving learning and recognition.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信