{"title":"发育协调障碍儿童和发育正常儿童在行走和奔跑过程中的肢体间协调性和时空变异性","authors":"Mieke Goetschalckx , Lousin Moumdjian , Peter Feys , Eugene Rameckers","doi":"10.1016/j.humov.2024.103252","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>A different interlimb coordination and higher variability in movement patterns is evident in children with Developmental Coordination Disorder (DCD). The impact of DCD on interlimb coordination during walking and running is unknown.</p></div><div><h3>Aim</h3><p>To assess interlimb coordination and spatiotemporal variability during overground walking and running in children with and without DCD.</p></div><div><h3>Methods</h3><p>Children with DCD and typically developing children (TDC), from 8 to 12 years participated. Children were equipped with portable sensors. Participants walked and ran for 3 min in an oval-path at their comfortable pace. Interlimb coordination, expressed by the phase coordination index (PCI), and spatiotemporal variability (coefficient of variance (CoV)) were collected.</p></div><div><h3>Results</h3><p>Twenty-one children with DCD and 23 TDC participated. During walking, PCI showed similar values in both groups, but a higher spatiotemporal variability was observed in children with DCD. During running, PCI was higher (reduced coordination) in children with DCD than TDC and a higher spatiotemporal variability was shown.</p></div><div><h3>Conclusions and implications</h3><p>Only during running, interlimb coordination of children with DCD was lower than TDC. During both walking and running tasks, spatiotemporal variability was higher in DCD. Current results implicate that difficulties in children with DCD is more prominent when motor coordination is more challenged.</p></div><div><h3>What this paper adds</h3><p>This paper adds to the literature on coordination and gait pattern in children with Developmental Coordination Disorder (DCD) through a cross-sectional analysis of interlimb coordination and variability of spatiotemporal measures of overground walking and running. Overground walking and running were performed in a large oval-path allowing the assessment of coordination and gait patterns in an ecological valid set-up. Our results indicate that during a more demanding task, namely running, children with DCD display a less coordinated running pattern, expressed by a significantly higher phase coordination index, than typically developing peers. During walking, the interlimb coordination was similar between both groups. The current result is in accordance with the hybrid model of DCD that states that motor coordination difficulties in DCD are dpendent on the interaction of the task, individual and environment. This highlights the importance of implementing running assessments in children with DCD and the need for task-oriented running training in clinical practice The study also supports previous findings that children with DCD show a higher variability in their gait pattern of both walking and running, expressed by higher coefficient of variance of spatiotemporal measures, than typically developing peers. Further understanding in the normal development of interlimb coordination during walking and running from childhood into adulthood will enhance interpretations of the phase coordination index in children with and without DCD.</p></div>","PeriodicalId":55046,"journal":{"name":"Human Movement Science","volume":"96 ","pages":"Article 103252"},"PeriodicalIF":1.6000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0167945724000757/pdfft?md5=bdfa10592f040097039d6f9bf19bdd5c&pid=1-s2.0-S0167945724000757-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Interlimb coordination and spatiotemporal variability during walking and running in children with developmental coordination disorder and typically developing children\",\"authors\":\"Mieke Goetschalckx , Lousin Moumdjian , Peter Feys , Eugene Rameckers\",\"doi\":\"10.1016/j.humov.2024.103252\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>A different interlimb coordination and higher variability in movement patterns is evident in children with Developmental Coordination Disorder (DCD). The impact of DCD on interlimb coordination during walking and running is unknown.</p></div><div><h3>Aim</h3><p>To assess interlimb coordination and spatiotemporal variability during overground walking and running in children with and without DCD.</p></div><div><h3>Methods</h3><p>Children with DCD and typically developing children (TDC), from 8 to 12 years participated. Children were equipped with portable sensors. Participants walked and ran for 3 min in an oval-path at their comfortable pace. Interlimb coordination, expressed by the phase coordination index (PCI), and spatiotemporal variability (coefficient of variance (CoV)) were collected.</p></div><div><h3>Results</h3><p>Twenty-one children with DCD and 23 TDC participated. During walking, PCI showed similar values in both groups, but a higher spatiotemporal variability was observed in children with DCD. During running, PCI was higher (reduced coordination) in children with DCD than TDC and a higher spatiotemporal variability was shown.</p></div><div><h3>Conclusions and implications</h3><p>Only during running, interlimb coordination of children with DCD was lower than TDC. During both walking and running tasks, spatiotemporal variability was higher in DCD. Current results implicate that difficulties in children with DCD is more prominent when motor coordination is more challenged.</p></div><div><h3>What this paper adds</h3><p>This paper adds to the literature on coordination and gait pattern in children with Developmental Coordination Disorder (DCD) through a cross-sectional analysis of interlimb coordination and variability of spatiotemporal measures of overground walking and running. Overground walking and running were performed in a large oval-path allowing the assessment of coordination and gait patterns in an ecological valid set-up. Our results indicate that during a more demanding task, namely running, children with DCD display a less coordinated running pattern, expressed by a significantly higher phase coordination index, than typically developing peers. During walking, the interlimb coordination was similar between both groups. The current result is in accordance with the hybrid model of DCD that states that motor coordination difficulties in DCD are dpendent on the interaction of the task, individual and environment. This highlights the importance of implementing running assessments in children with DCD and the need for task-oriented running training in clinical practice The study also supports previous findings that children with DCD show a higher variability in their gait pattern of both walking and running, expressed by higher coefficient of variance of spatiotemporal measures, than typically developing peers. Further understanding in the normal development of interlimb coordination during walking and running from childhood into adulthood will enhance interpretations of the phase coordination index in children with and without DCD.</p></div>\",\"PeriodicalId\":55046,\"journal\":{\"name\":\"Human Movement Science\",\"volume\":\"96 \",\"pages\":\"Article 103252\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0167945724000757/pdfft?md5=bdfa10592f040097039d6f9bf19bdd5c&pid=1-s2.0-S0167945724000757-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human Movement Science\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167945724000757\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Movement Science","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167945724000757","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Interlimb coordination and spatiotemporal variability during walking and running in children with developmental coordination disorder and typically developing children
Background
A different interlimb coordination and higher variability in movement patterns is evident in children with Developmental Coordination Disorder (DCD). The impact of DCD on interlimb coordination during walking and running is unknown.
Aim
To assess interlimb coordination and spatiotemporal variability during overground walking and running in children with and without DCD.
Methods
Children with DCD and typically developing children (TDC), from 8 to 12 years participated. Children were equipped with portable sensors. Participants walked and ran for 3 min in an oval-path at their comfortable pace. Interlimb coordination, expressed by the phase coordination index (PCI), and spatiotemporal variability (coefficient of variance (CoV)) were collected.
Results
Twenty-one children with DCD and 23 TDC participated. During walking, PCI showed similar values in both groups, but a higher spatiotemporal variability was observed in children with DCD. During running, PCI was higher (reduced coordination) in children with DCD than TDC and a higher spatiotemporal variability was shown.
Conclusions and implications
Only during running, interlimb coordination of children with DCD was lower than TDC. During both walking and running tasks, spatiotemporal variability was higher in DCD. Current results implicate that difficulties in children with DCD is more prominent when motor coordination is more challenged.
What this paper adds
This paper adds to the literature on coordination and gait pattern in children with Developmental Coordination Disorder (DCD) through a cross-sectional analysis of interlimb coordination and variability of spatiotemporal measures of overground walking and running. Overground walking and running were performed in a large oval-path allowing the assessment of coordination and gait patterns in an ecological valid set-up. Our results indicate that during a more demanding task, namely running, children with DCD display a less coordinated running pattern, expressed by a significantly higher phase coordination index, than typically developing peers. During walking, the interlimb coordination was similar between both groups. The current result is in accordance with the hybrid model of DCD that states that motor coordination difficulties in DCD are dpendent on the interaction of the task, individual and environment. This highlights the importance of implementing running assessments in children with DCD and the need for task-oriented running training in clinical practice The study also supports previous findings that children with DCD show a higher variability in their gait pattern of both walking and running, expressed by higher coefficient of variance of spatiotemporal measures, than typically developing peers. Further understanding in the normal development of interlimb coordination during walking and running from childhood into adulthood will enhance interpretations of the phase coordination index in children with and without DCD.
期刊介绍:
Human Movement Science provides a medium for publishing disciplinary and multidisciplinary studies on human movement. It brings together psychological, biomechanical and neurophysiological research on the control, organization and learning of human movement, including the perceptual support of movement. The overarching goal of the journal is to publish articles that help advance theoretical understanding of the control and organization of human movement, as well as changes therein as a function of development, learning and rehabilitation. The nature of the research reported may vary from fundamental theoretical or empirical studies to more applied studies in the fields of, for example, sport, dance and rehabilitation with the proviso that all studies have a distinct theoretical bearing. Also, reviews and meta-studies advancing the understanding of human movement are welcome.
These aims and scope imply that purely descriptive studies are not acceptable, while methodological articles are only acceptable if the methodology in question opens up new vistas in understanding the control and organization of human movement. The same holds for articles on exercise physiology, which in general are not supported, unless they speak to the control and organization of human movement. In general, it is required that the theoretical message of articles published in Human Movement Science is, to a certain extent, innovative and not dismissible as just "more of the same."