解决封闭域中低马赫数流动的人工可压缩性方法

IF 2.5 3区 工程技术 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
A. Beccantini , C. Corre , S. Gounand , C.-H. Phan
{"title":"解决封闭域中低马赫数流动的人工可压缩性方法","authors":"A. Beccantini ,&nbsp;C. Corre ,&nbsp;S. Gounand ,&nbsp;C.-H. Phan","doi":"10.1016/j.compfluid.2024.106364","DOIUrl":null,"url":null,"abstract":"<div><p>An artificial compressibility approach is proposed to compute the solution of the compressible equations in the low Mach number limit, in closed domain with moving boundaries. The low Mach number stiffness is reduced by introducing an artificial sound speed, much lower than the physical one. This allows to avoid both the acoustic time step restriction and the loss of accuracy of classical compressible solvers, without solving a Poisson equation for the pressure or using the time-implicit discretization of the Turkel-type preconditioning technique. Moreover the proposed formulation involves the conservative variables plus the dynamic pressure, which facilitates the implementation of the approach in classical CFD codes for compressible flows. The numerical experiments presented show that the approach is both accurate and CPU efficient.</p></div>","PeriodicalId":287,"journal":{"name":"Computers & Fluids","volume":"280 ","pages":"Article 106364"},"PeriodicalIF":2.5000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0045793024001968/pdfft?md5=3c1e8f8f18e0eb1776c399c9dc23ba2d&pid=1-s2.0-S0045793024001968-main.pdf","citationCount":"0","resultStr":"{\"title\":\"An artificial compressibility approach to solve low Mach number flows in closed domains\",\"authors\":\"A. Beccantini ,&nbsp;C. Corre ,&nbsp;S. Gounand ,&nbsp;C.-H. Phan\",\"doi\":\"10.1016/j.compfluid.2024.106364\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>An artificial compressibility approach is proposed to compute the solution of the compressible equations in the low Mach number limit, in closed domain with moving boundaries. The low Mach number stiffness is reduced by introducing an artificial sound speed, much lower than the physical one. This allows to avoid both the acoustic time step restriction and the loss of accuracy of classical compressible solvers, without solving a Poisson equation for the pressure or using the time-implicit discretization of the Turkel-type preconditioning technique. Moreover the proposed formulation involves the conservative variables plus the dynamic pressure, which facilitates the implementation of the approach in classical CFD codes for compressible flows. The numerical experiments presented show that the approach is both accurate and CPU efficient.</p></div>\",\"PeriodicalId\":287,\"journal\":{\"name\":\"Computers & Fluids\",\"volume\":\"280 \",\"pages\":\"Article 106364\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0045793024001968/pdfft?md5=3c1e8f8f18e0eb1776c399c9dc23ba2d&pid=1-s2.0-S0045793024001968-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Fluids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0045793024001968\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Fluids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045793024001968","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种人工可压缩性方法,用于计算低马赫数极限下可压缩方程在具有移动边界的封闭域中的解法。通过引入比物理声速低得多的人工声速来降低低马赫数刚度。这样就可以避免声学时间步长限制和经典可压缩求解器的精度损失,而无需求解压力泊松方程或使用 Turkel 型预处理技术的时间隐式离散化。此外,建议的公式涉及保守变量和动态压力,这有助于在经典的可压缩流 CFD 代码中实施该方法。所做的数值实验表明,该方法既精确又高效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An artificial compressibility approach to solve low Mach number flows in closed domains

An artificial compressibility approach is proposed to compute the solution of the compressible equations in the low Mach number limit, in closed domain with moving boundaries. The low Mach number stiffness is reduced by introducing an artificial sound speed, much lower than the physical one. This allows to avoid both the acoustic time step restriction and the loss of accuracy of classical compressible solvers, without solving a Poisson equation for the pressure or using the time-implicit discretization of the Turkel-type preconditioning technique. Moreover the proposed formulation involves the conservative variables plus the dynamic pressure, which facilitates the implementation of the approach in classical CFD codes for compressible flows. The numerical experiments presented show that the approach is both accurate and CPU efficient.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Fluids
Computers & Fluids 物理-计算机:跨学科应用
CiteScore
5.30
自引率
7.10%
发文量
242
审稿时长
10.8 months
期刊介绍: Computers & Fluids is multidisciplinary. The term ''fluid'' is interpreted in the broadest sense. Hydro- and aerodynamics, high-speed and physical gas dynamics, turbulence and flow stability, multiphase flow, rheology, tribology and fluid-structure interaction are all of interest, provided that computer technique plays a significant role in the associated studies or design methodology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信