Tibor Major, Júlia Vizkeleti, Péter Ágoston, Zoltán Takácsi-Nagy, Csaba Polgár
{"title":"[癌症患者近距离放射治疗中新成像模式的应用]。","authors":"Tibor Major, Júlia Vizkeleti, Péter Ágoston, Zoltán Takácsi-Nagy, Csaba Polgár","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>In the Radiotherapy Centre of the National Institute of Oncology, Budapest, a 0.55 T MR scanner (MAGNETOM Free. Max) and a ring-like X-ray machine (ImagingRing) have been in operation since 2022. The MR scanner has a tunnel diameter of 80 cm, the X-ray machine has a ring diameter of 121 cm. The latter can also be used for cone-beam CT (CBCT) imaging. The MR scanner is mainly used for planning gynaecological brachytherapy (BT) treatments. Image distortions in MR imaging were investigated with a special grid phantom. After head and neck and breast implant, image quality of ImagingRing CBCT and planning CT was compared. The position of the radiation source was verified by radiographs taken during treatment. Despite the lower field strength, the image quality of the MR scanner was found to be adequate for treatment planning of gynaecological BT. Image distortions were found to be clinically negligible. On CBCT images obtained with ImagingRing, catheters could always be well identified, and anatomical organs were adequately visualized for head and neck treatments, but not for breast implants. The MR scanner is suitable for treatment planning for gynaecological BT due to its good image quality and low image distortion. The image quality of the ImagingRing is suitable for treatment planning for small body sizes, but not for larger sizes. The device can be used to in vivo check of the radiation source position during treatment.</p>","PeriodicalId":94127,"journal":{"name":"Magyar onkologia","volume":"68 2","pages":"155-162"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"[Application of new imaging modalities for brachytherapy of cancer patients].\",\"authors\":\"Tibor Major, Júlia Vizkeleti, Péter Ágoston, Zoltán Takácsi-Nagy, Csaba Polgár\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In the Radiotherapy Centre of the National Institute of Oncology, Budapest, a 0.55 T MR scanner (MAGNETOM Free. Max) and a ring-like X-ray machine (ImagingRing) have been in operation since 2022. The MR scanner has a tunnel diameter of 80 cm, the X-ray machine has a ring diameter of 121 cm. The latter can also be used for cone-beam CT (CBCT) imaging. The MR scanner is mainly used for planning gynaecological brachytherapy (BT) treatments. Image distortions in MR imaging were investigated with a special grid phantom. After head and neck and breast implant, image quality of ImagingRing CBCT and planning CT was compared. The position of the radiation source was verified by radiographs taken during treatment. Despite the lower field strength, the image quality of the MR scanner was found to be adequate for treatment planning of gynaecological BT. Image distortions were found to be clinically negligible. On CBCT images obtained with ImagingRing, catheters could always be well identified, and anatomical organs were adequately visualized for head and neck treatments, but not for breast implants. The MR scanner is suitable for treatment planning for gynaecological BT due to its good image quality and low image distortion. The image quality of the ImagingRing is suitable for treatment planning for small body sizes, but not for larger sizes. The device can be used to in vivo check of the radiation source position during treatment.</p>\",\"PeriodicalId\":94127,\"journal\":{\"name\":\"Magyar onkologia\",\"volume\":\"68 2\",\"pages\":\"155-162\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Magyar onkologia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/4/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magyar onkologia","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/4/22 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
[Application of new imaging modalities for brachytherapy of cancer patients].
In the Radiotherapy Centre of the National Institute of Oncology, Budapest, a 0.55 T MR scanner (MAGNETOM Free. Max) and a ring-like X-ray machine (ImagingRing) have been in operation since 2022. The MR scanner has a tunnel diameter of 80 cm, the X-ray machine has a ring diameter of 121 cm. The latter can also be used for cone-beam CT (CBCT) imaging. The MR scanner is mainly used for planning gynaecological brachytherapy (BT) treatments. Image distortions in MR imaging were investigated with a special grid phantom. After head and neck and breast implant, image quality of ImagingRing CBCT and planning CT was compared. The position of the radiation source was verified by radiographs taken during treatment. Despite the lower field strength, the image quality of the MR scanner was found to be adequate for treatment planning of gynaecological BT. Image distortions were found to be clinically negligible. On CBCT images obtained with ImagingRing, catheters could always be well identified, and anatomical organs were adequately visualized for head and neck treatments, but not for breast implants. The MR scanner is suitable for treatment planning for gynaecological BT due to its good image quality and low image distortion. The image quality of the ImagingRing is suitable for treatment planning for small body sizes, but not for larger sizes. The device can be used to in vivo check of the radiation source position during treatment.