{"title":"用光动反应评估蟒蛇的视力。","authors":"Zaira Gomez, D Joshua Cameron, Curtis Eng","doi":"10.1111/vop.13259","DOIUrl":null,"url":null,"abstract":"<p><p>Snakes are known for their unique abilities including infrared reception and their heavy reliance on heat sensors and vibrations. Infrared reception of snakes has gone under immense investigation; however, there have been very few studies that elaborate on their capacity to see. The goal of this study is to determine visual acuity of ball pythons (Python regius) by observing their optokinetic response (OKR). The OKR is a series of rapid saccadic and smooth pursuit movements of the eyes. It has been used for decades to determine visual acuity in multiple species such as humans, rats, and other nonmammalian species such as zebrafish and box turtles. Past studies have discovered that birds, reptiles, and amphibians achieve gaze stabilization by head and body movements, whereas in mammals and fish, gaze stabilization is conducted by eye movements. In this study, ball pythons were placed in a clear tube in a dark room, and a spinning black and white grating was projected in front of them. The size, direction, and velocity of the grating was manipulated which allowed their visual acuity to be determined. Our hypothesis is that P. regius would have a poor OKR response with low visual acuity due to their heavy reliance on other senses. Results show that P. regius does respond to visual stimuli, shows ocular saccadic movement in the direction of their stimuli, and has a relatively poor visual acuity when compared to other previously studied reptiles.</p>","PeriodicalId":23836,"journal":{"name":"Veterinary ophthalmology","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessment of visual acuity in Python regius using optokinetic response.\",\"authors\":\"Zaira Gomez, D Joshua Cameron, Curtis Eng\",\"doi\":\"10.1111/vop.13259\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Snakes are known for their unique abilities including infrared reception and their heavy reliance on heat sensors and vibrations. Infrared reception of snakes has gone under immense investigation; however, there have been very few studies that elaborate on their capacity to see. The goal of this study is to determine visual acuity of ball pythons (Python regius) by observing their optokinetic response (OKR). The OKR is a series of rapid saccadic and smooth pursuit movements of the eyes. It has been used for decades to determine visual acuity in multiple species such as humans, rats, and other nonmammalian species such as zebrafish and box turtles. Past studies have discovered that birds, reptiles, and amphibians achieve gaze stabilization by head and body movements, whereas in mammals and fish, gaze stabilization is conducted by eye movements. In this study, ball pythons were placed in a clear tube in a dark room, and a spinning black and white grating was projected in front of them. The size, direction, and velocity of the grating was manipulated which allowed their visual acuity to be determined. Our hypothesis is that P. regius would have a poor OKR response with low visual acuity due to their heavy reliance on other senses. Results show that P. regius does respond to visual stimuli, shows ocular saccadic movement in the direction of their stimuli, and has a relatively poor visual acuity when compared to other previously studied reptiles.</p>\",\"PeriodicalId\":23836,\"journal\":{\"name\":\"Veterinary ophthalmology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Veterinary ophthalmology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1111/vop.13259\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"VETERINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Veterinary ophthalmology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/vop.13259","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"VETERINARY SCIENCES","Score":null,"Total":0}
Assessment of visual acuity in Python regius using optokinetic response.
Snakes are known for their unique abilities including infrared reception and their heavy reliance on heat sensors and vibrations. Infrared reception of snakes has gone under immense investigation; however, there have been very few studies that elaborate on their capacity to see. The goal of this study is to determine visual acuity of ball pythons (Python regius) by observing their optokinetic response (OKR). The OKR is a series of rapid saccadic and smooth pursuit movements of the eyes. It has been used for decades to determine visual acuity in multiple species such as humans, rats, and other nonmammalian species such as zebrafish and box turtles. Past studies have discovered that birds, reptiles, and amphibians achieve gaze stabilization by head and body movements, whereas in mammals and fish, gaze stabilization is conducted by eye movements. In this study, ball pythons were placed in a clear tube in a dark room, and a spinning black and white grating was projected in front of them. The size, direction, and velocity of the grating was manipulated which allowed their visual acuity to be determined. Our hypothesis is that P. regius would have a poor OKR response with low visual acuity due to their heavy reliance on other senses. Results show that P. regius does respond to visual stimuli, shows ocular saccadic movement in the direction of their stimuli, and has a relatively poor visual acuity when compared to other previously studied reptiles.
期刊介绍:
Veterinary Ophthalmology is a peer-reviewed, international journal that welcomes submission of manuscripts directed towards academic researchers of veterinary ophthalmology, specialists and general practitioners with a strong ophthalmology interest. Articles include those relating to all aspects of:
Clinical and investigational veterinary and comparative ophthalmology;
Prospective and retrospective studies or reviews of naturally occurring ocular disease in veterinary species;
Experimental models of both animal and human ocular disease in veterinary species;
Anatomic studies of the animal eye;
Physiological studies of the animal eye;
Pharmacological studies of the animal eye.