高电流接触线环境附近乘客电磁场暴露的计算分析。

IF 0.8 4区 环境科学与生态学 Q4 ENVIRONMENTAL SCIENCES
Changqiong Yang, Mai Lu
{"title":"高电流接触线环境附近乘客电磁场暴露的计算分析。","authors":"Changqiong Yang, Mai Lu","doi":"10.1093/rpd/ncae162","DOIUrl":null,"url":null,"abstract":"<p><p>The electromagnetic environment of a railway station is composed of electrical, magnetic, and electromagnetic fields, which are generated by various sources such as traction current, voltage, pantograph-catenary arc, locomotive braking, wheel-rail rolling arc, and communication systems. However, there is public growing concern among the public about the potential negative human health effects of this electromagnetic environment. To analyze the distribution of electromagnetic fields in human tissues, electromagnetic simulation software is used to create a model that includes six track contact wires and four waiting passengers on three platforms. This model is used to analyze the magnetic field environment created by high currents in the contact wires of a multi-track high-speed railway station. By varying the loads on different contact wires, the distribution of electric field and magnetic flux density within human tissues of waiting passengers on different platforms is studied using this model. When the track is unoccupied, the calculation results show that the maximum values of the electric field and magnetic flux density of the passenger's human body tissue at the blind way on the platform and 1 m of the blind way are 17.6 mV m-1 and 52.7 μT, respectively. These values increase by 9.28 mV m-1 and 16.4 μT compared to when the track is occupied. When more contact wires are loaded with currents, the electric field mode and magnetic flux density mode of human tissues increase at the same position on the platform. Specifically, when the contact wires of six tracks are loaded with current at the same time, the maximum values of the electric field mode and magnetic flux density mode of the waiting passengers' human tissues at the blind way on different platforms are 29.6 mV m-1 and 88.1 μT, respectively. These maximum values are lower than the public electromagnetic exposure limits that are designated by the International Commission on Non-Ionizing Radiation Protection guidelines. The research results demonstrate that the magnetic field environment generated by the current in the contact wires of a railway station with six tracks does not pose a health risk to human tissues of passengers waiting at the blind way and 1 m of the blind way on the platform. These findings can provide valuable data reference for the formulation of relevant standards for the design of electrified rail transit, as well as the suppression of electromagnetic interference and protection of human bioelectromagnetism.</p>","PeriodicalId":20795,"journal":{"name":"Radiation protection dosimetry","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computational analysis of electromagnetic field exposure in passengers near high- current contact wire environments.\",\"authors\":\"Changqiong Yang, Mai Lu\",\"doi\":\"10.1093/rpd/ncae162\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The electromagnetic environment of a railway station is composed of electrical, magnetic, and electromagnetic fields, which are generated by various sources such as traction current, voltage, pantograph-catenary arc, locomotive braking, wheel-rail rolling arc, and communication systems. However, there is public growing concern among the public about the potential negative human health effects of this electromagnetic environment. To analyze the distribution of electromagnetic fields in human tissues, electromagnetic simulation software is used to create a model that includes six track contact wires and four waiting passengers on three platforms. This model is used to analyze the magnetic field environment created by high currents in the contact wires of a multi-track high-speed railway station. By varying the loads on different contact wires, the distribution of electric field and magnetic flux density within human tissues of waiting passengers on different platforms is studied using this model. When the track is unoccupied, the calculation results show that the maximum values of the electric field and magnetic flux density of the passenger's human body tissue at the blind way on the platform and 1 m of the blind way are 17.6 mV m-1 and 52.7 μT, respectively. These values increase by 9.28 mV m-1 and 16.4 μT compared to when the track is occupied. When more contact wires are loaded with currents, the electric field mode and magnetic flux density mode of human tissues increase at the same position on the platform. Specifically, when the contact wires of six tracks are loaded with current at the same time, the maximum values of the electric field mode and magnetic flux density mode of the waiting passengers' human tissues at the blind way on different platforms are 29.6 mV m-1 and 88.1 μT, respectively. These maximum values are lower than the public electromagnetic exposure limits that are designated by the International Commission on Non-Ionizing Radiation Protection guidelines. The research results demonstrate that the magnetic field environment generated by the current in the contact wires of a railway station with six tracks does not pose a health risk to human tissues of passengers waiting at the blind way and 1 m of the blind way on the platform. These findings can provide valuable data reference for the formulation of relevant standards for the design of electrified rail transit, as well as the suppression of electromagnetic interference and protection of human bioelectromagnetism.</p>\",\"PeriodicalId\":20795,\"journal\":{\"name\":\"Radiation protection dosimetry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radiation protection dosimetry\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1093/rpd/ncae162\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiation protection dosimetry","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1093/rpd/ncae162","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

火车站的电磁环境由电场、磁场和电磁场组成,这些电磁场由各种来源产生,如牵引电流、电压、受电弓-集电弓电弧、机车制动、轮轨滚动电弧和通信系统。然而,公众越来越关注这种电磁环境对人体健康的潜在负面影响。为了分析电磁场在人体组织中的分布,我们使用电磁模拟软件创建了一个模型,其中包括六根轨道接触线和三个站台上的四名候车乘客。该模型用于分析多轨高速铁路车站接触网中大电流产生的磁场环境。通过改变不同接触导线上的负载,该模型研究了不同站台上候车乘客人体组织内的电场和磁通密度分布。计算结果表明,轨道空闲时,乘客人体组织在站台盲道和盲道 1 米处的电场和磁通密度最大值分别为 17.6 mV m-1 和 52.7 μT。与轨道被占用时相比,这些数值分别增加了 9.28 mV m-1 和 16.4 μT。当更多的接触导线加载电流时,人体组织在平台上相同位置的电场模式和磁通密度模式都会增加。具体来说,当六条轨道的接触线同时加载电流时,不同站台盲道上候车乘客人体组织的电场模式和磁通密度模式的最大值分别为 29.6 mV m-1 和 88.1 μT。这些最大值均低于国际非电离辐射防护委员会指南中规定的公共电磁暴露限值。研究结果表明,在有六条轨道的火车站内,接触网电流产生的磁场环境不会对站台盲道和盲道 1 米处候车乘客的人体组织造成健康风险。这些研究结果可以为电气化轨道交通设计相关标准的制定,以及抑制电磁干扰、保护人体生物电磁学提供有价值的数据参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computational analysis of electromagnetic field exposure in passengers near high- current contact wire environments.

The electromagnetic environment of a railway station is composed of electrical, magnetic, and electromagnetic fields, which are generated by various sources such as traction current, voltage, pantograph-catenary arc, locomotive braking, wheel-rail rolling arc, and communication systems. However, there is public growing concern among the public about the potential negative human health effects of this electromagnetic environment. To analyze the distribution of electromagnetic fields in human tissues, electromagnetic simulation software is used to create a model that includes six track contact wires and four waiting passengers on three platforms. This model is used to analyze the magnetic field environment created by high currents in the contact wires of a multi-track high-speed railway station. By varying the loads on different contact wires, the distribution of electric field and magnetic flux density within human tissues of waiting passengers on different platforms is studied using this model. When the track is unoccupied, the calculation results show that the maximum values of the electric field and magnetic flux density of the passenger's human body tissue at the blind way on the platform and 1 m of the blind way are 17.6 mV m-1 and 52.7 μT, respectively. These values increase by 9.28 mV m-1 and 16.4 μT compared to when the track is occupied. When more contact wires are loaded with currents, the electric field mode and magnetic flux density mode of human tissues increase at the same position on the platform. Specifically, when the contact wires of six tracks are loaded with current at the same time, the maximum values of the electric field mode and magnetic flux density mode of the waiting passengers' human tissues at the blind way on different platforms are 29.6 mV m-1 and 88.1 μT, respectively. These maximum values are lower than the public electromagnetic exposure limits that are designated by the International Commission on Non-Ionizing Radiation Protection guidelines. The research results demonstrate that the magnetic field environment generated by the current in the contact wires of a railway station with six tracks does not pose a health risk to human tissues of passengers waiting at the blind way and 1 m of the blind way on the platform. These findings can provide valuable data reference for the formulation of relevant standards for the design of electrified rail transit, as well as the suppression of electromagnetic interference and protection of human bioelectromagnetism.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Radiation protection dosimetry
Radiation protection dosimetry 环境科学-公共卫生、环境卫生与职业卫生
CiteScore
1.40
自引率
10.00%
发文量
223
审稿时长
6-12 weeks
期刊介绍: Radiation Protection Dosimetry covers all aspects of personal and environmental dosimetry and monitoring, for both ionising and non-ionising radiations. This includes biological aspects, physical concepts, biophysical dosimetry, external and internal personal dosimetry and monitoring, environmental and workplace monitoring, accident dosimetry, and dosimetry related to the protection of patients. Particular emphasis is placed on papers covering the fundamentals of dosimetry; units, radiation quantities and conversion factors. Papers covering archaeological dating are included only if the fundamental measurement method or technique, such as thermoluminescence, has direct application to personal dosimetry measurements. Papers covering the dosimetric aspects of radon or other naturally occurring radioactive materials and low level radiation are included. Animal experiments and ecological sample measurements are not included unless there is a significant relevant content reason.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信