{"title":"MAPtools:用于测序制图和 QTL-Seq 分析及可视化的命令行工具。","authors":"César Martínez-Guardiola, Ricardo Parreño, Héctor Candela","doi":"10.1186/s13007-024-01222-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Classical mutagenesis is a powerful tool that has allowed researchers to elucidate the molecular and genetic basis of a plethora of processes in many model species. The integration of these methods with modern massively parallel sequencing techniques, initially in model species but currently also in many crop species, is accelerating the identification of genes underlying a wide range of traits of agronomic interest.</p><p><strong>Results: </strong>We have developed MAPtools, an open-source Python3 application designed specifically for the analysis of genomic data from bulked segregant analysis experiments, including mapping-by-sequencing (MBS) and quantitative trait locus sequencing (QTL-seq) experiments. We have extensively tested MAPtools using datasets published in recent literature.</p><p><strong>Conclusions: </strong>MAPtools gives users the flexibility to customize their bioinformatics pipeline with various commands for calculating allele count-based statistics, generating plots to pinpoint candidate regions, and annotating the effects of SNP and indel mutations. While extensively tested with plants, the program is versatile and applicable to any species for which a mapping population can be generated and a sequenced genome is available.</p><p><strong>Availability and implementation: </strong>MAPtools is available under GPL v3.0 license and documented as a Python3 package at https://github.com/hcandela/MAPtools .</p>","PeriodicalId":20100,"journal":{"name":"Plant Methods","volume":"20 1","pages":"107"},"PeriodicalIF":4.7000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11253474/pdf/","citationCount":"0","resultStr":"{\"title\":\"MAPtools: command-line tools for mapping-by-sequencing and QTL-Seq analysis and visualization.\",\"authors\":\"César Martínez-Guardiola, Ricardo Parreño, Héctor Candela\",\"doi\":\"10.1186/s13007-024-01222-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Classical mutagenesis is a powerful tool that has allowed researchers to elucidate the molecular and genetic basis of a plethora of processes in many model species. The integration of these methods with modern massively parallel sequencing techniques, initially in model species but currently also in many crop species, is accelerating the identification of genes underlying a wide range of traits of agronomic interest.</p><p><strong>Results: </strong>We have developed MAPtools, an open-source Python3 application designed specifically for the analysis of genomic data from bulked segregant analysis experiments, including mapping-by-sequencing (MBS) and quantitative trait locus sequencing (QTL-seq) experiments. We have extensively tested MAPtools using datasets published in recent literature.</p><p><strong>Conclusions: </strong>MAPtools gives users the flexibility to customize their bioinformatics pipeline with various commands for calculating allele count-based statistics, generating plots to pinpoint candidate regions, and annotating the effects of SNP and indel mutations. While extensively tested with plants, the program is versatile and applicable to any species for which a mapping population can be generated and a sequenced genome is available.</p><p><strong>Availability and implementation: </strong>MAPtools is available under GPL v3.0 license and documented as a Python3 package at https://github.com/hcandela/MAPtools .</p>\",\"PeriodicalId\":20100,\"journal\":{\"name\":\"Plant Methods\",\"volume\":\"20 1\",\"pages\":\"107\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11253474/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Methods\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13007-024-01222-2\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Methods","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13007-024-01222-2","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
MAPtools: command-line tools for mapping-by-sequencing and QTL-Seq analysis and visualization.
Background: Classical mutagenesis is a powerful tool that has allowed researchers to elucidate the molecular and genetic basis of a plethora of processes in many model species. The integration of these methods with modern massively parallel sequencing techniques, initially in model species but currently also in many crop species, is accelerating the identification of genes underlying a wide range of traits of agronomic interest.
Results: We have developed MAPtools, an open-source Python3 application designed specifically for the analysis of genomic data from bulked segregant analysis experiments, including mapping-by-sequencing (MBS) and quantitative trait locus sequencing (QTL-seq) experiments. We have extensively tested MAPtools using datasets published in recent literature.
Conclusions: MAPtools gives users the flexibility to customize their bioinformatics pipeline with various commands for calculating allele count-based statistics, generating plots to pinpoint candidate regions, and annotating the effects of SNP and indel mutations. While extensively tested with plants, the program is versatile and applicable to any species for which a mapping population can be generated and a sequenced genome is available.
Availability and implementation: MAPtools is available under GPL v3.0 license and documented as a Python3 package at https://github.com/hcandela/MAPtools .
期刊介绍:
Plant Methods is an open access, peer-reviewed, online journal for the plant research community that encompasses all aspects of technological innovation in the plant sciences.
There is no doubt that we have entered an exciting new era in plant biology. The completion of the Arabidopsis genome sequence, and the rapid progress being made in other plant genomics projects are providing unparalleled opportunities for progress in all areas of plant science. Nevertheless, enormous challenges lie ahead if we are to understand the function of every gene in the genome, and how the individual parts work together to make the whole organism. Achieving these goals will require an unprecedented collaborative effort, combining high-throughput, system-wide technologies with more focused approaches that integrate traditional disciplines such as cell biology, biochemistry and molecular genetics.
Technological innovation is probably the most important catalyst for progress in any scientific discipline. Plant Methods’ goal is to stimulate the development and adoption of new and improved techniques and research tools and, where appropriate, to promote consistency of methodologies for better integration of data from different laboratories.