氟西汀能挽救创伤后应激障碍小鼠模型中的过度髓鞘形成和心理行为

IF 5.9 2区 医学 Q1 NEUROSCIENCES
Neuroscience bulletin Pub Date : 2024-08-01 Epub Date: 2024-07-16 DOI:10.1007/s12264-024-01249-4
Chenrui Yin, Kefei Luo, Xinyue Zhu, Ronghang Zheng, Yu Wang, Guangdan Yu, Xiaorui Wang, Fei She, Xiaoying Chen, Tao Li, Jingfei Chen, Baduojie Bian, Yixun Su, Jianqin Niu, Yuxin Wang
{"title":"氟西汀能挽救创伤后应激障碍小鼠模型中的过度髓鞘形成和心理行为","authors":"Chenrui Yin, Kefei Luo, Xinyue Zhu, Ronghang Zheng, Yu Wang, Guangdan Yu, Xiaorui Wang, Fei She, Xiaoying Chen, Tao Li, Jingfei Chen, Baduojie Bian, Yixun Su, Jianqin Niu, Yuxin Wang","doi":"10.1007/s12264-024-01249-4","DOIUrl":null,"url":null,"abstract":"<p><p>Posttraumatic stress disorder (PTSD) is a complex mental disorder notable for traumatic experience memory. Although current first-line treatments are linked with clinically important symptom reduction, a large proportion of patients retained to experience considerable residual symptoms, indicating pathogenic mechanism should be illustrated further. Recent studies reported that newly formed myelin could shape neural circuit function and be implicated in fear memory preservation. However, its role in PTSD remains to be elucidated. In this study, we adopted a restraint stress-induced PTSD mouse model and found that PTSD-related neuropsychiatric symptoms were accompanied by increased myelination in the posterior parietal cortex and hippocampus. Fluoxetine, but not risperidone or sertraline, has a more profound rescue effect on neuropsychological behaviors and myelin abnormalities. Further mechanistic experiments revealed that fluoxetine could directly interfere with oligodendroglial differentiation by upregulating Wnt signaling. Our data demonstrated the correlation between PTSD and abnormal myelination, suggesting that the oligodendroglial lineage could be a target for PTSD treatment.</p>","PeriodicalId":19314,"journal":{"name":"Neuroscience bulletin","volume":null,"pages":null},"PeriodicalIF":5.9000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11306862/pdf/","citationCount":"0","resultStr":"{\"title\":\"Fluoxetine Rescues Excessive Myelin Formation and Psychological Behaviors in a Murine PTSD Model.\",\"authors\":\"Chenrui Yin, Kefei Luo, Xinyue Zhu, Ronghang Zheng, Yu Wang, Guangdan Yu, Xiaorui Wang, Fei She, Xiaoying Chen, Tao Li, Jingfei Chen, Baduojie Bian, Yixun Su, Jianqin Niu, Yuxin Wang\",\"doi\":\"10.1007/s12264-024-01249-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Posttraumatic stress disorder (PTSD) is a complex mental disorder notable for traumatic experience memory. Although current first-line treatments are linked with clinically important symptom reduction, a large proportion of patients retained to experience considerable residual symptoms, indicating pathogenic mechanism should be illustrated further. Recent studies reported that newly formed myelin could shape neural circuit function and be implicated in fear memory preservation. However, its role in PTSD remains to be elucidated. In this study, we adopted a restraint stress-induced PTSD mouse model and found that PTSD-related neuropsychiatric symptoms were accompanied by increased myelination in the posterior parietal cortex and hippocampus. Fluoxetine, but not risperidone or sertraline, has a more profound rescue effect on neuropsychological behaviors and myelin abnormalities. Further mechanistic experiments revealed that fluoxetine could directly interfere with oligodendroglial differentiation by upregulating Wnt signaling. Our data demonstrated the correlation between PTSD and abnormal myelination, suggesting that the oligodendroglial lineage could be a target for PTSD treatment.</p>\",\"PeriodicalId\":19314,\"journal\":{\"name\":\"Neuroscience bulletin\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11306862/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuroscience bulletin\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12264-024-01249-4\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience bulletin","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12264-024-01249-4","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/16 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

创伤后应激障碍(PTSD)是一种以创伤经历记忆为显著特征的复杂精神障碍。尽管目前的一线治疗能显著减轻患者的临床症状,但仍有很大一部分患者保留了相当多的残留症状,这表明致病机制有待进一步研究。最近的研究报告称,新形成的髓鞘可塑造神经回路功能,并与恐惧记忆的保存有关。然而,它在创伤后应激障碍中的作用仍有待阐明。在这项研究中,我们采用了束缚应激诱导的创伤后应激障碍小鼠模型,发现创伤后应激障碍相关的神经精神症状伴随着后顶叶皮层和海马的髓鞘化增加。氟西汀(而不是利培酮或舍曲林)对神经心理行为和髓鞘异常有更深远的挽救作用。进一步的机理实验显示,氟西汀可通过上调 Wnt 信号直接干扰少突胶质细胞的分化。我们的数据证明了创伤后应激障碍与髓鞘异常之间的相关性,表明少突胶质细胞系可能是治疗创伤后应激障碍的靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Fluoxetine Rescues Excessive Myelin Formation and Psychological Behaviors in a Murine PTSD Model.

Fluoxetine Rescues Excessive Myelin Formation and Psychological Behaviors in a Murine PTSD Model.

Posttraumatic stress disorder (PTSD) is a complex mental disorder notable for traumatic experience memory. Although current first-line treatments are linked with clinically important symptom reduction, a large proportion of patients retained to experience considerable residual symptoms, indicating pathogenic mechanism should be illustrated further. Recent studies reported that newly formed myelin could shape neural circuit function and be implicated in fear memory preservation. However, its role in PTSD remains to be elucidated. In this study, we adopted a restraint stress-induced PTSD mouse model and found that PTSD-related neuropsychiatric symptoms were accompanied by increased myelination in the posterior parietal cortex and hippocampus. Fluoxetine, but not risperidone or sertraline, has a more profound rescue effect on neuropsychological behaviors and myelin abnormalities. Further mechanistic experiments revealed that fluoxetine could directly interfere with oligodendroglial differentiation by upregulating Wnt signaling. Our data demonstrated the correlation between PTSD and abnormal myelination, suggesting that the oligodendroglial lineage could be a target for PTSD treatment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neuroscience bulletin
Neuroscience bulletin NEUROSCIENCES-
CiteScore
7.20
自引率
16.10%
发文量
163
审稿时长
6-12 weeks
期刊介绍: Neuroscience Bulletin (NB), the official journal of the Chinese Neuroscience Society, is published monthly by Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) and Springer. NB aims to publish research advances in the field of neuroscience and promote exchange of scientific ideas within the community. The journal publishes original papers on various topics in neuroscience and focuses on potential disease implications on the nervous system. NB welcomes research contributions on molecular, cellular, or developmental neuroscience using multidisciplinary approaches and functional strategies. We feature full-length original articles, reviews, methods, letters to the editor, insights, and research highlights. As the official journal of the Chinese Neuroscience Society, which currently has more than 12,000 members in China, NB is devoted to facilitating communications between Chinese neuroscientists and their international colleagues. The journal is recognized as the most influential publication in neuroscience research in China.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信