Shutao Zheng, Shuo He, Yan Liang, Qing Liu, Tao Liu, Yiyi Tan, Tianyuan Peng, Conggai Huang, Haidong Gao, Xiaomei Lu
{"title":"NME4 可抑制 NFκB2-CCL5 轴,限制 CD8+ T 细胞在食道鳞状细胞癌中的肿瘤浸润。","authors":"Shutao Zheng, Shuo He, Yan Liang, Qing Liu, Tao Liu, Yiyi Tan, Tianyuan Peng, Conggai Huang, Haidong Gao, Xiaomei Lu","doi":"10.1111/imm.13838","DOIUrl":null,"url":null,"abstract":"<p>Thought of as a metastasis-associated gene, however, NME/NM23 nucleoside diphosphate kinase 4 (NME4) has rarely been described in the context of the tumour microenvironment. To understand the immunological implications of NME4 in oesophageal squamous cell carcinoma (ESCC), we used multiplex immunohistochemistry to analyse the clinicopathological and prognostic importance of NME4 expression. Then, after establishing a syngeneic tumour model with a C57BL/6 mouse strain that can recapitulate the tumour microenvironment of humans, we examined the immunological involvement of NME4 expression. To explore the underlying molecular mechanism, via quantitative proteomics and protein microarray screening, we investigated the potential signalling pathways involved. The clinicopathological and prognostic importance of NME4 expression is limited in ESCC patients. In vivo, single-cell RNA sequencing showed that NME4 strikingly prevented CD8+ T cells from infiltrating the tumour microenvironment in murine ESCC. Mechanistically, we mapped out the NFκB2-CCL5 axis that was negatively controlled by NME4 in the murine ESCC cell line AKR. Collectively, these data demonstrated that regulation of NFκB2-CCL5 axis by NME4 prevents CD8+ T cells infiltration in ESCC.</p>","PeriodicalId":13508,"journal":{"name":"Immunology","volume":"173 2","pages":"408-421"},"PeriodicalIF":4.9000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NME4 suppresses NFκB2-CCL5 axis, restricting CD8+ T cell tumour infiltration in oesophageal squamous cell carcinoma\",\"authors\":\"Shutao Zheng, Shuo He, Yan Liang, Qing Liu, Tao Liu, Yiyi Tan, Tianyuan Peng, Conggai Huang, Haidong Gao, Xiaomei Lu\",\"doi\":\"10.1111/imm.13838\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Thought of as a metastasis-associated gene, however, NME/NM23 nucleoside diphosphate kinase 4 (NME4) has rarely been described in the context of the tumour microenvironment. To understand the immunological implications of NME4 in oesophageal squamous cell carcinoma (ESCC), we used multiplex immunohistochemistry to analyse the clinicopathological and prognostic importance of NME4 expression. Then, after establishing a syngeneic tumour model with a C57BL/6 mouse strain that can recapitulate the tumour microenvironment of humans, we examined the immunological involvement of NME4 expression. To explore the underlying molecular mechanism, via quantitative proteomics and protein microarray screening, we investigated the potential signalling pathways involved. The clinicopathological and prognostic importance of NME4 expression is limited in ESCC patients. In vivo, single-cell RNA sequencing showed that NME4 strikingly prevented CD8+ T cells from infiltrating the tumour microenvironment in murine ESCC. Mechanistically, we mapped out the NFκB2-CCL5 axis that was negatively controlled by NME4 in the murine ESCC cell line AKR. Collectively, these data demonstrated that regulation of NFκB2-CCL5 axis by NME4 prevents CD8+ T cells infiltration in ESCC.</p>\",\"PeriodicalId\":13508,\"journal\":{\"name\":\"Immunology\",\"volume\":\"173 2\",\"pages\":\"408-421\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Immunology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/imm.13838\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immunology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/imm.13838","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
NME4 suppresses NFκB2-CCL5 axis, restricting CD8+ T cell tumour infiltration in oesophageal squamous cell carcinoma
Thought of as a metastasis-associated gene, however, NME/NM23 nucleoside diphosphate kinase 4 (NME4) has rarely been described in the context of the tumour microenvironment. To understand the immunological implications of NME4 in oesophageal squamous cell carcinoma (ESCC), we used multiplex immunohistochemistry to analyse the clinicopathological and prognostic importance of NME4 expression. Then, after establishing a syngeneic tumour model with a C57BL/6 mouse strain that can recapitulate the tumour microenvironment of humans, we examined the immunological involvement of NME4 expression. To explore the underlying molecular mechanism, via quantitative proteomics and protein microarray screening, we investigated the potential signalling pathways involved. The clinicopathological and prognostic importance of NME4 expression is limited in ESCC patients. In vivo, single-cell RNA sequencing showed that NME4 strikingly prevented CD8+ T cells from infiltrating the tumour microenvironment in murine ESCC. Mechanistically, we mapped out the NFκB2-CCL5 axis that was negatively controlled by NME4 in the murine ESCC cell line AKR. Collectively, these data demonstrated that regulation of NFκB2-CCL5 axis by NME4 prevents CD8+ T cells infiltration in ESCC.
期刊介绍:
Immunology is one of the longest-established immunology journals and is recognised as one of the leading journals in its field. We have global representation in authors, editors and reviewers.
Immunology publishes papers describing original findings in all areas of cellular and molecular immunology. High-quality original articles describing mechanistic insights into fundamental aspects of the immune system are welcome. Topics of interest to the journal include: immune cell development, cancer immunology, systems immunology/omics and informatics, inflammation, immunometabolism, immunology of infection, microbiota and immunity, mucosal immunology, and neuroimmunology.
The journal also publishes commissioned review articles on subjects of topical interest to immunologists, and commissions in-depth review series: themed sets of review articles which take a 360° view of select topics at the heart of immunological research.