Katherine Kin, Shounak Bhogale, Lisha Zhu, Derrick Thomas, Jessica Bertol, W Jim Zheng, Saurabh Sinha, Walid D Fakhouri
{"title":"从序列到表达的方法识别 P53 和 cMYC 驱动型疾病中的病因非编码 DNA 变异。","authors":"Katherine Kin, Shounak Bhogale, Lisha Zhu, Derrick Thomas, Jessica Bertol, W Jim Zheng, Saurabh Sinha, Walid D Fakhouri","doi":"10.1093/hmg/ddae109","DOIUrl":null,"url":null,"abstract":"<p><p>Disease risk prediction based on genomic sequence and transcriptional profile can improve disease screening and prevention. Despite identifying many disease-associated DNA variants, distinguishing deleterious non-coding DNA variations remains poor for most common diseases. In this study, we designed in vitro experiments to uncover the significance of occupancy and competitive binding between P53 and cMYC on common target genes. Analyzing publicly available ChIP-seq data for P53 and cMYC in embryonic stem cells showed that ~344-366 regions are co-occupied, and on average, two cis-overlapping motifs (CisOMs) per region were identified, suggesting that co-occupancy is evolutionarily conserved. Using U2OS and Raji cells untreated and treated with doxorubicin to increase P53 protein level while potentially reducing cMYC level, ChIP-seq analysis illustrated that around 16 to 922 genomic regions were co-occupied by P53 and cMYC, and substitutions of cMYC signals by P53 were detected post doxorubicin treatment. Around 187 expressed genes near co-occupied regions were altered at mRNA level according to RNA-seq data analysis. We utilized a computational motif-matching approach to illustrate that changes in predicted P53 binding affinity in CisOMs of co-occupied elements significantly correlate with alterations in reporter gene expression. We performed a similar analysis using SNPs mapped in CisOMs for P53 and cMYC from ChIP-seq data, and expression of target genes from GTEx portal. We found significant correlation between change in cMYC-motif binding affinity in CisOMs and altered expression. Our study brings us closer to developing a generally applicable approach to filter etiological non-coding variations associated with common diseases.</p>","PeriodicalId":13070,"journal":{"name":"Human molecular genetics","volume":" ","pages":"1697-1710"},"PeriodicalIF":3.1000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11413647/pdf/","citationCount":"0","resultStr":"{\"title\":\"Sequence-to-expression approach to identify etiological non-coding DNA variations in P53 and cMYC-driven diseases.\",\"authors\":\"Katherine Kin, Shounak Bhogale, Lisha Zhu, Derrick Thomas, Jessica Bertol, W Jim Zheng, Saurabh Sinha, Walid D Fakhouri\",\"doi\":\"10.1093/hmg/ddae109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Disease risk prediction based on genomic sequence and transcriptional profile can improve disease screening and prevention. Despite identifying many disease-associated DNA variants, distinguishing deleterious non-coding DNA variations remains poor for most common diseases. In this study, we designed in vitro experiments to uncover the significance of occupancy and competitive binding between P53 and cMYC on common target genes. Analyzing publicly available ChIP-seq data for P53 and cMYC in embryonic stem cells showed that ~344-366 regions are co-occupied, and on average, two cis-overlapping motifs (CisOMs) per region were identified, suggesting that co-occupancy is evolutionarily conserved. Using U2OS and Raji cells untreated and treated with doxorubicin to increase P53 protein level while potentially reducing cMYC level, ChIP-seq analysis illustrated that around 16 to 922 genomic regions were co-occupied by P53 and cMYC, and substitutions of cMYC signals by P53 were detected post doxorubicin treatment. Around 187 expressed genes near co-occupied regions were altered at mRNA level according to RNA-seq data analysis. We utilized a computational motif-matching approach to illustrate that changes in predicted P53 binding affinity in CisOMs of co-occupied elements significantly correlate with alterations in reporter gene expression. We performed a similar analysis using SNPs mapped in CisOMs for P53 and cMYC from ChIP-seq data, and expression of target genes from GTEx portal. We found significant correlation between change in cMYC-motif binding affinity in CisOMs and altered expression. Our study brings us closer to developing a generally applicable approach to filter etiological non-coding variations associated with common diseases.</p>\",\"PeriodicalId\":13070,\"journal\":{\"name\":\"Human molecular genetics\",\"volume\":\" \",\"pages\":\"1697-1710\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11413647/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human molecular genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/hmg/ddae109\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human molecular genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/hmg/ddae109","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Sequence-to-expression approach to identify etiological non-coding DNA variations in P53 and cMYC-driven diseases.
Disease risk prediction based on genomic sequence and transcriptional profile can improve disease screening and prevention. Despite identifying many disease-associated DNA variants, distinguishing deleterious non-coding DNA variations remains poor for most common diseases. In this study, we designed in vitro experiments to uncover the significance of occupancy and competitive binding between P53 and cMYC on common target genes. Analyzing publicly available ChIP-seq data for P53 and cMYC in embryonic stem cells showed that ~344-366 regions are co-occupied, and on average, two cis-overlapping motifs (CisOMs) per region were identified, suggesting that co-occupancy is evolutionarily conserved. Using U2OS and Raji cells untreated and treated with doxorubicin to increase P53 protein level while potentially reducing cMYC level, ChIP-seq analysis illustrated that around 16 to 922 genomic regions were co-occupied by P53 and cMYC, and substitutions of cMYC signals by P53 were detected post doxorubicin treatment. Around 187 expressed genes near co-occupied regions were altered at mRNA level according to RNA-seq data analysis. We utilized a computational motif-matching approach to illustrate that changes in predicted P53 binding affinity in CisOMs of co-occupied elements significantly correlate with alterations in reporter gene expression. We performed a similar analysis using SNPs mapped in CisOMs for P53 and cMYC from ChIP-seq data, and expression of target genes from GTEx portal. We found significant correlation between change in cMYC-motif binding affinity in CisOMs and altered expression. Our study brings us closer to developing a generally applicable approach to filter etiological non-coding variations associated with common diseases.
期刊介绍:
Human Molecular Genetics concentrates on full-length research papers covering a wide range of topics in all aspects of human molecular genetics. These include:
the molecular basis of human genetic disease
developmental genetics
cancer genetics
neurogenetics
chromosome and genome structure and function
therapy of genetic disease
stem cells in human genetic disease and therapy, including the application of iPS cells
genome-wide association studies
mouse and other models of human diseases
functional genomics
computational genomics
In addition, the journal also publishes research on other model systems for the analysis of genes, especially when there is an obvious relevance to human genetics.