Junrui Liang, Jun Ye, Xiaoya Ma, Yao Lu, Jun Li, Jiangming Xu, Zilun Chen, Jinyong Leng, Zongfu Jiang, Pu Zhou
{"title":"采用全光纤光子灯笼的模分复用重构光谱仪。","authors":"Junrui Liang, Jun Ye, Xiaoya Ma, Yao Lu, Jun Li, Jiangming Xu, Zilun Chen, Jinyong Leng, Zongfu Jiang, Pu Zhou","doi":"10.1007/s12200-024-00130-6","DOIUrl":null,"url":null,"abstract":"<p><p>This study presents a high-accuracy, all-fiber mode division multiplexing (MDM) reconstructive spectrometer (RS). The MDM was achieved by utilizing a custom-designed 3 × 1 mode-selective photonics lantern to launch distinct spatial modes into the multimode fiber (MMF). This facilitated the information transmission by increasing light scattering processes, thereby encoding the optical spectra more comprehensively into speckle patterns. Spectral resolution of 2 pm and the recovery of 2000 spectral channels were accomplished. Compared to methods employing single-mode excitation and two-mode excitation, the three-mode excitation method reduced the recovered error by 88% and 50% respectively. A resolution enhancement approach based on alternating mode modulation was proposed, reaching the MMF limit for the 3 dB bandwidth of the spectral correlation function. The proof-of-concept study can be further extended to encompass diverse programmable mode excitations. It is not only succinct and highly efficient but also well-suited for a variety of high-accuracy, high-resolution spectral measurement scenarios.</p>","PeriodicalId":12685,"journal":{"name":"Frontiers of Optoelectronics","volume":"17 1","pages":"23"},"PeriodicalIF":4.1000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11252098/pdf/","citationCount":"0","resultStr":"{\"title\":\"Mode division multiplexing reconstructive spectrometer with an all-fiber photonics lantern.\",\"authors\":\"Junrui Liang, Jun Ye, Xiaoya Ma, Yao Lu, Jun Li, Jiangming Xu, Zilun Chen, Jinyong Leng, Zongfu Jiang, Pu Zhou\",\"doi\":\"10.1007/s12200-024-00130-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study presents a high-accuracy, all-fiber mode division multiplexing (MDM) reconstructive spectrometer (RS). The MDM was achieved by utilizing a custom-designed 3 × 1 mode-selective photonics lantern to launch distinct spatial modes into the multimode fiber (MMF). This facilitated the information transmission by increasing light scattering processes, thereby encoding the optical spectra more comprehensively into speckle patterns. Spectral resolution of 2 pm and the recovery of 2000 spectral channels were accomplished. Compared to methods employing single-mode excitation and two-mode excitation, the three-mode excitation method reduced the recovered error by 88% and 50% respectively. A resolution enhancement approach based on alternating mode modulation was proposed, reaching the MMF limit for the 3 dB bandwidth of the spectral correlation function. The proof-of-concept study can be further extended to encompass diverse programmable mode excitations. It is not only succinct and highly efficient but also well-suited for a variety of high-accuracy, high-resolution spectral measurement scenarios.</p>\",\"PeriodicalId\":12685,\"journal\":{\"name\":\"Frontiers of Optoelectronics\",\"volume\":\"17 1\",\"pages\":\"23\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11252098/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Optoelectronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12200-024-00130-6\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Optoelectronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12200-024-00130-6","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Mode division multiplexing reconstructive spectrometer with an all-fiber photonics lantern.
This study presents a high-accuracy, all-fiber mode division multiplexing (MDM) reconstructive spectrometer (RS). The MDM was achieved by utilizing a custom-designed 3 × 1 mode-selective photonics lantern to launch distinct spatial modes into the multimode fiber (MMF). This facilitated the information transmission by increasing light scattering processes, thereby encoding the optical spectra more comprehensively into speckle patterns. Spectral resolution of 2 pm and the recovery of 2000 spectral channels were accomplished. Compared to methods employing single-mode excitation and two-mode excitation, the three-mode excitation method reduced the recovered error by 88% and 50% respectively. A resolution enhancement approach based on alternating mode modulation was proposed, reaching the MMF limit for the 3 dB bandwidth of the spectral correlation function. The proof-of-concept study can be further extended to encompass diverse programmable mode excitations. It is not only succinct and highly efficient but also well-suited for a variety of high-accuracy, high-resolution spectral measurement scenarios.
期刊介绍:
Frontiers of Optoelectronics seeks to provide a multidisciplinary forum for a broad mix of peer-reviewed academic papers in order to promote rapid communication and exchange between researchers in China and abroad. It introduces and reflects significant achievements being made in the field of photonics or optoelectronics. The topics include, but are not limited to, semiconductor optoelectronics, nano-photonics, information photonics, energy photonics, ultrafast photonics, biomedical photonics, nonlinear photonics, fiber optics, laser and terahertz technology and intelligent photonics. The journal publishes reviews, research articles, letters, comments, special issues and so on.
Frontiers of Optoelectronics especially encourages papers from new emerging and multidisciplinary areas, papers reflecting the international trends of research and development, and on special topics reporting progress made in the field of optoelectronics. All published papers will reflect the original thoughts of researchers and practitioners on basic theories, design and new technology in optoelectronics.
Frontiers of Optoelectronics is strictly peer-reviewed and only accepts original submissions in English. It is a fully OA journal and the APCs are covered by Higher Education Press and Huazhong University of Science and Technology.
● Presents the latest developments in optoelectronics and optics
● Emphasizes the latest developments of new optoelectronic materials, devices, systems and applications
● Covers industrial photonics, information photonics, biomedical photonics, energy photonics, laser and terahertz technology, and more