Reed Mszar, Miguel Cainzos-Achirica, Javier Valero-Elizondo, Shubham Lahan, Sadeer G Al-Kindi, Renato Quispe, Shozab S Ali, Lara Arias, Anshul Saxena, Svati H Shah, Ricardo C Cury, Matthew J Budoff, Michael J Blaha, Michael D Shapiro, Garima Sharma, Raul D Santos, Ron Blankstein, Theodore Feldman, Jonathan Fialkow, Khurram Nasir
{"title":"无症状人群的脂蛋白(a)和冠状动脉斑块:南佛罗里达浸信会健康中心的迈阿密心脏研究。","authors":"Reed Mszar, Miguel Cainzos-Achirica, Javier Valero-Elizondo, Shubham Lahan, Sadeer G Al-Kindi, Renato Quispe, Shozab S Ali, Lara Arias, Anshul Saxena, Svati H Shah, Ricardo C Cury, Matthew J Budoff, Michael J Blaha, Michael D Shapiro, Garima Sharma, Raul D Santos, Ron Blankstein, Theodore Feldman, Jonathan Fialkow, Khurram Nasir","doi":"10.1161/CIRCIMAGING.123.016152","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Elevated levels of lipoprotein(a) (Lp(a)) are independently associated with an increased risk of atherosclerotic cardiovascular disease events. However, the mechanisms driving this association are poorly understood. We aimed to evaluate the association between Lp(a) and coronary plaque characteristics in a contemporary US cohort without clinical atherosclerotic cardiovascular disease, undergoing coronary computed tomography angiography, the noninvasive gold standard for the assessment of coronary atherosclerosis.</p><p><strong>Methods: </strong>We used baseline data from the Miami Heart Study-a community-based, prospective cohort study-which included asymptomatic adults aged 40 to 65 years evaluated using coronary computed tomography angiography. Those taking any lipid-lowering therapies were excluded. Elevated Lp(a) was defined as ≥125 nmol/L. Outcomes included any plaque, coronary artery calcium score >0, maximal stenosis ≥50%, presence of any high-risk plaque feature (positive remodeling, spotty calcification, low-attenuation plaque, napkin ring), and the presence of ≥2 high-risk plaque features.</p><p><strong>Results: </strong>Among 1795 participants (median age, 52 years; 54.3% women; 49.6% Hispanic), 291 (16.2%) had Lp(a) ≥125 nmol/L. In unadjusted analyses, individuals with Lp(a) ≥125 nmol/L had a higher prevalence of all outcomes compared with Lp(a) <125 nmol/L, although differences were only statistically significant for the presence of any coronary plaque and ≥2 high-risk features. In multivariable models, elevated Lp(a) was independently associated with the presence of any coronary plaque (odds ratio, 1.40, [95% CI, 1.05-1.86]) and with ≥2 high-risk features (odds ratio, 3.94, [95% CI, 1.82-8.52]), although only 35 participants had this finding. Among participants with a coronary artery calcium score of 0 (n=1200), those with Lp(a) ≥125 nmol/L had a significantly higher percentage of any plaque compared with those with Lp(a) <125 nmol/L (24.2% versus 14.2%; <i>P</i><0.001).</p><p><strong>Conclusions: </strong>In this contemporary analysis, elevated Lp(a) was independently associated with the presence of coronary plaque. Larger studies are needed to confirm the strong association observed with the presence of multiple high-risk coronary plaque features.</p>","PeriodicalId":10202,"journal":{"name":"Circulation: Cardiovascular Imaging","volume":"17 7","pages":"e016152"},"PeriodicalIF":6.5000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lipoprotein(a) and Coronary Plaque in Asymptomatic Individuals: The Miami Heart Study at Baptist Health South Florida.\",\"authors\":\"Reed Mszar, Miguel Cainzos-Achirica, Javier Valero-Elizondo, Shubham Lahan, Sadeer G Al-Kindi, Renato Quispe, Shozab S Ali, Lara Arias, Anshul Saxena, Svati H Shah, Ricardo C Cury, Matthew J Budoff, Michael J Blaha, Michael D Shapiro, Garima Sharma, Raul D Santos, Ron Blankstein, Theodore Feldman, Jonathan Fialkow, Khurram Nasir\",\"doi\":\"10.1161/CIRCIMAGING.123.016152\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Elevated levels of lipoprotein(a) (Lp(a)) are independently associated with an increased risk of atherosclerotic cardiovascular disease events. However, the mechanisms driving this association are poorly understood. We aimed to evaluate the association between Lp(a) and coronary plaque characteristics in a contemporary US cohort without clinical atherosclerotic cardiovascular disease, undergoing coronary computed tomography angiography, the noninvasive gold standard for the assessment of coronary atherosclerosis.</p><p><strong>Methods: </strong>We used baseline data from the Miami Heart Study-a community-based, prospective cohort study-which included asymptomatic adults aged 40 to 65 years evaluated using coronary computed tomography angiography. Those taking any lipid-lowering therapies were excluded. Elevated Lp(a) was defined as ≥125 nmol/L. Outcomes included any plaque, coronary artery calcium score >0, maximal stenosis ≥50%, presence of any high-risk plaque feature (positive remodeling, spotty calcification, low-attenuation plaque, napkin ring), and the presence of ≥2 high-risk plaque features.</p><p><strong>Results: </strong>Among 1795 participants (median age, 52 years; 54.3% women; 49.6% Hispanic), 291 (16.2%) had Lp(a) ≥125 nmol/L. In unadjusted analyses, individuals with Lp(a) ≥125 nmol/L had a higher prevalence of all outcomes compared with Lp(a) <125 nmol/L, although differences were only statistically significant for the presence of any coronary plaque and ≥2 high-risk features. In multivariable models, elevated Lp(a) was independently associated with the presence of any coronary plaque (odds ratio, 1.40, [95% CI, 1.05-1.86]) and with ≥2 high-risk features (odds ratio, 3.94, [95% CI, 1.82-8.52]), although only 35 participants had this finding. Among participants with a coronary artery calcium score of 0 (n=1200), those with Lp(a) ≥125 nmol/L had a significantly higher percentage of any plaque compared with those with Lp(a) <125 nmol/L (24.2% versus 14.2%; <i>P</i><0.001).</p><p><strong>Conclusions: </strong>In this contemporary analysis, elevated Lp(a) was independently associated with the presence of coronary plaque. Larger studies are needed to confirm the strong association observed with the presence of multiple high-risk coronary plaque features.</p>\",\"PeriodicalId\":10202,\"journal\":{\"name\":\"Circulation: Cardiovascular Imaging\",\"volume\":\"17 7\",\"pages\":\"e016152\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Circulation: Cardiovascular Imaging\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1161/CIRCIMAGING.123.016152\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Circulation: Cardiovascular Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1161/CIRCIMAGING.123.016152","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/16 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
Lipoprotein(a) and Coronary Plaque in Asymptomatic Individuals: The Miami Heart Study at Baptist Health South Florida.
Background: Elevated levels of lipoprotein(a) (Lp(a)) are independently associated with an increased risk of atherosclerotic cardiovascular disease events. However, the mechanisms driving this association are poorly understood. We aimed to evaluate the association between Lp(a) and coronary plaque characteristics in a contemporary US cohort without clinical atherosclerotic cardiovascular disease, undergoing coronary computed tomography angiography, the noninvasive gold standard for the assessment of coronary atherosclerosis.
Methods: We used baseline data from the Miami Heart Study-a community-based, prospective cohort study-which included asymptomatic adults aged 40 to 65 years evaluated using coronary computed tomography angiography. Those taking any lipid-lowering therapies were excluded. Elevated Lp(a) was defined as ≥125 nmol/L. Outcomes included any plaque, coronary artery calcium score >0, maximal stenosis ≥50%, presence of any high-risk plaque feature (positive remodeling, spotty calcification, low-attenuation plaque, napkin ring), and the presence of ≥2 high-risk plaque features.
Results: Among 1795 participants (median age, 52 years; 54.3% women; 49.6% Hispanic), 291 (16.2%) had Lp(a) ≥125 nmol/L. In unadjusted analyses, individuals with Lp(a) ≥125 nmol/L had a higher prevalence of all outcomes compared with Lp(a) <125 nmol/L, although differences were only statistically significant for the presence of any coronary plaque and ≥2 high-risk features. In multivariable models, elevated Lp(a) was independently associated with the presence of any coronary plaque (odds ratio, 1.40, [95% CI, 1.05-1.86]) and with ≥2 high-risk features (odds ratio, 3.94, [95% CI, 1.82-8.52]), although only 35 participants had this finding. Among participants with a coronary artery calcium score of 0 (n=1200), those with Lp(a) ≥125 nmol/L had a significantly higher percentage of any plaque compared with those with Lp(a) <125 nmol/L (24.2% versus 14.2%; P<0.001).
Conclusions: In this contemporary analysis, elevated Lp(a) was independently associated with the presence of coronary plaque. Larger studies are needed to confirm the strong association observed with the presence of multiple high-risk coronary plaque features.
期刊介绍:
Circulation: Cardiovascular Imaging, an American Heart Association journal, publishes high-quality, patient-centric articles focusing on observational studies, clinical trials, and advances in applied (translational) research. The journal features innovative, multimodality approaches to the diagnosis and risk stratification of cardiovascular disease. Modalities covered include echocardiography, cardiac computed tomography, cardiac magnetic resonance imaging and spectroscopy, magnetic resonance angiography, cardiac positron emission tomography, noninvasive assessment of vascular and endothelial function, radionuclide imaging, molecular imaging, and others.
Article types considered by Circulation: Cardiovascular Imaging include Original Research, Research Letters, Advances in Cardiovascular Imaging, Clinical Implications of Molecular Imaging Research, How to Use Imaging, Translating Novel Imaging Technologies into Clinical Applications, and Cardiovascular Images.