Mohammad Behrouzi Varjovi, Rasool Asghari-Zakaria, Ghader Hosseinzadeh
{"title":"评估胍基二甲双胍和加勒奎因作为治疗癌症的新型潜在药物的抑制行为:一项硅学研究。","authors":"Mohammad Behrouzi Varjovi, Rasool Asghari-Zakaria, Ghader Hosseinzadeh","doi":"10.1002/bab.2636","DOIUrl":null,"url":null,"abstract":"<p>There are some natural products from plants that can prevent and treat disease. Metformin, a derivative of galegine, is the basic drug to treat diabetes. Moreover, this molecule has anticancer properties that inhibit cancer cell growth and proliferation. In this study, the main interactions of galegine and metformin with various cancer-involved proteins, including mitochondrial alpha-glycerophosphate dehydrogenase, yeast NADH dehydrogenase, and transforming growth factor-β1, were surveyed by molecular docking and molecular dynamics simulations. The results showed that each of the proteins makes complexes with the ligands via favorable non-bonded interactions, especially hydrogen bond interactions. There is greater stability for complexes containing galegine based on the root mean square deviation results. The higher structure compactness is also found in galegine receptors than in metformin receptors. Calculation of Δ<i>G</i><sub>binding</sub>, using the MM/PBSA methodology, shows that the binding energy values for metformin and galegine in interaction with each of the receptors are almost the same, and galegine has similar binding properties with metformin in interaction with the studied protein receptors. Therefore, galegine, a natural ingredient with better binding properties to cancer-involved proteins than metformin (with various side effects), can be applied as a new drug for cancer treatment.</p>","PeriodicalId":9274,"journal":{"name":"Biotechnology and applied biochemistry","volume":"71 6","pages":"1370-1383"},"PeriodicalIF":3.2000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of suppressor behavior of guanidine-derived metformin and galegine as novel potential drugs for cancer treatment: an in silico study\",\"authors\":\"Mohammad Behrouzi Varjovi, Rasool Asghari-Zakaria, Ghader Hosseinzadeh\",\"doi\":\"10.1002/bab.2636\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>There are some natural products from plants that can prevent and treat disease. Metformin, a derivative of galegine, is the basic drug to treat diabetes. Moreover, this molecule has anticancer properties that inhibit cancer cell growth and proliferation. In this study, the main interactions of galegine and metformin with various cancer-involved proteins, including mitochondrial alpha-glycerophosphate dehydrogenase, yeast NADH dehydrogenase, and transforming growth factor-β1, were surveyed by molecular docking and molecular dynamics simulations. The results showed that each of the proteins makes complexes with the ligands via favorable non-bonded interactions, especially hydrogen bond interactions. There is greater stability for complexes containing galegine based on the root mean square deviation results. The higher structure compactness is also found in galegine receptors than in metformin receptors. Calculation of Δ<i>G</i><sub>binding</sub>, using the MM/PBSA methodology, shows that the binding energy values for metformin and galegine in interaction with each of the receptors are almost the same, and galegine has similar binding properties with metformin in interaction with the studied protein receptors. Therefore, galegine, a natural ingredient with better binding properties to cancer-involved proteins than metformin (with various side effects), can be applied as a new drug for cancer treatment.</p>\",\"PeriodicalId\":9274,\"journal\":{\"name\":\"Biotechnology and applied biochemistry\",\"volume\":\"71 6\",\"pages\":\"1370-1383\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology and applied biochemistry\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/bab.2636\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology and applied biochemistry","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bab.2636","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Evaluation of suppressor behavior of guanidine-derived metformin and galegine as novel potential drugs for cancer treatment: an in silico study
There are some natural products from plants that can prevent and treat disease. Metformin, a derivative of galegine, is the basic drug to treat diabetes. Moreover, this molecule has anticancer properties that inhibit cancer cell growth and proliferation. In this study, the main interactions of galegine and metformin with various cancer-involved proteins, including mitochondrial alpha-glycerophosphate dehydrogenase, yeast NADH dehydrogenase, and transforming growth factor-β1, were surveyed by molecular docking and molecular dynamics simulations. The results showed that each of the proteins makes complexes with the ligands via favorable non-bonded interactions, especially hydrogen bond interactions. There is greater stability for complexes containing galegine based on the root mean square deviation results. The higher structure compactness is also found in galegine receptors than in metformin receptors. Calculation of ΔGbinding, using the MM/PBSA methodology, shows that the binding energy values for metformin and galegine in interaction with each of the receptors are almost the same, and galegine has similar binding properties with metformin in interaction with the studied protein receptors. Therefore, galegine, a natural ingredient with better binding properties to cancer-involved proteins than metformin (with various side effects), can be applied as a new drug for cancer treatment.
期刊介绍:
Published since 1979, Biotechnology and Applied Biochemistry is dedicated to the rapid publication of high quality, significant research at the interface between life sciences and their technological exploitation.
The Editors will consider papers for publication based on their novelty and impact as well as their contribution to the advancement of medical biotechnology and industrial biotechnology, covering cutting-edge research in synthetic biology, systems biology, metabolic engineering, bioengineering, biomaterials, biosensing, and nano-biotechnology.