以绿色能源驱动氨生产,实现可持续发展目标

IF 19.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Chem Pub Date : 2024-09-12 DOI:10.1016/j.chempr.2024.06.014
{"title":"以绿色能源驱动氨生产,实现可持续发展目标","authors":"","doi":"10.1016/j.chempr.2024.06.014","DOIUrl":null,"url":null,"abstract":"<div><p><span>Nitrogen is the fundamental element for all living organisms to build proteins, nucleic acids, and various biomolecules. The industrial Haber-Bosch process, a cornerstone in converting atmospheric nitrogen (N</span><sub>2</sub>) to metabolic ammonia (NH<sub>3</sub>), is marked by its significant carbon footprint. With the widespread deployment of renewable energy systems, exploring sustainable approaches for ambient, low-carbon, and decentralized NH<sub>3</sub> production is promising yet challenging. This perspective summarizes our recent advancements in designing catalytic systems for NH<sub>3</sub> synthesis, which use innocuous N<sub>2</sub> or detrimental nitrate (NO<sub>3</sub><sup>−</sup><span>) as feedstocks, harnessing solar light and electricity as the source of green energy. We demonstrate some active sites’ engineering strategies to improve the activity and selectivity of catalytic NH</span><sub>3</sub> synthesis. A flow-through-coupled device is then highlighted for efficient NH<sub>3</sub> separation without any pH adjustment. We also discuss the challenges and perspectives of sustainable nitrogen loops powered by green energy in aspects of fundamental research and industrial application.</p></div>","PeriodicalId":268,"journal":{"name":"Chem","volume":null,"pages":null},"PeriodicalIF":19.1000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Green energy-driven ammonia production for sustainable development goals\",\"authors\":\"\",\"doi\":\"10.1016/j.chempr.2024.06.014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Nitrogen is the fundamental element for all living organisms to build proteins, nucleic acids, and various biomolecules. The industrial Haber-Bosch process, a cornerstone in converting atmospheric nitrogen (N</span><sub>2</sub>) to metabolic ammonia (NH<sub>3</sub>), is marked by its significant carbon footprint. With the widespread deployment of renewable energy systems, exploring sustainable approaches for ambient, low-carbon, and decentralized NH<sub>3</sub> production is promising yet challenging. This perspective summarizes our recent advancements in designing catalytic systems for NH<sub>3</sub> synthesis, which use innocuous N<sub>2</sub> or detrimental nitrate (NO<sub>3</sub><sup>−</sup><span>) as feedstocks, harnessing solar light and electricity as the source of green energy. We demonstrate some active sites’ engineering strategies to improve the activity and selectivity of catalytic NH</span><sub>3</sub> synthesis. A flow-through-coupled device is then highlighted for efficient NH<sub>3</sub> separation without any pH adjustment. We also discuss the challenges and perspectives of sustainable nitrogen loops powered by green energy in aspects of fundamental research and industrial application.</p></div>\",\"PeriodicalId\":268,\"journal\":{\"name\":\"Chem\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":19.1000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2451929424002936\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451929424002936","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

氮是所有生物体制造蛋白质、核酸和各种生物大分子的基本元素。工业化哈伯-博施工艺是将大气中的氮气(N2)转化为代谢氨气(NH3)的基石,但其碳足迹却非常显著。随着可再生能源系统的广泛应用,探索环境、低碳和分散式 NH3 生产的可持续方法前景广阔,但也充满挑战。本视角总结了我们最近在设计 NH3 合成催化系统方面取得的进展,这些系统以无害的 N2 或有害的硝酸盐(NO3-)为原料,利用太阳能和电能作为绿色能源。我们展示了一些活性位点工程策略,以提高催化 NH3 合成的活性和选择性。然后,我们重点介绍了一种无需调节 pH 值即可高效分离 NH3 的流动耦合装置。我们还讨论了以绿色能源为动力的可持续氮循环在基础研究和工业应用方面所面临的挑战和前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Green energy-driven ammonia production for sustainable development goals

Green energy-driven ammonia production for sustainable development goals

Green energy-driven ammonia production for sustainable development goals

Nitrogen is the fundamental element for all living organisms to build proteins, nucleic acids, and various biomolecules. The industrial Haber-Bosch process, a cornerstone in converting atmospheric nitrogen (N2) to metabolic ammonia (NH3), is marked by its significant carbon footprint. With the widespread deployment of renewable energy systems, exploring sustainable approaches for ambient, low-carbon, and decentralized NH3 production is promising yet challenging. This perspective summarizes our recent advancements in designing catalytic systems for NH3 synthesis, which use innocuous N2 or detrimental nitrate (NO3) as feedstocks, harnessing solar light and electricity as the source of green energy. We demonstrate some active sites’ engineering strategies to improve the activity and selectivity of catalytic NH3 synthesis. A flow-through-coupled device is then highlighted for efficient NH3 separation without any pH adjustment. We also discuss the challenges and perspectives of sustainable nitrogen loops powered by green energy in aspects of fundamental research and industrial application.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chem
Chem Environmental Science-Environmental Chemistry
CiteScore
32.40
自引率
1.30%
发文量
281
期刊介绍: Chem, affiliated with Cell as its sister journal, serves as a platform for groundbreaking research and illustrates how fundamental inquiries in chemistry and its related fields can contribute to addressing future global challenges. It was established in 2016, and is currently edited by Robert Eagling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信