数字病理学中的深度学习应用

IF 28.6 1区 医学 Q1 UROLOGY & NEPHROLOGY
Peter Boor
{"title":"数字病理学中的深度学习应用","authors":"Peter Boor","doi":"10.1038/s41581-024-00870-w","DOIUrl":null,"url":null,"abstract":"Deep Learning (DL) holds great promise to improve patient outcomes by improving the precision and speed of disease diagnosis and treatment recommendations. Given the efficacy of DL in image analysis, pathology will likely be one of the first medical fields transformed by DL. However, several challenges must be overcome before we can expect to see the use of DL transform the digital future of pathology.","PeriodicalId":19059,"journal":{"name":"Nature Reviews Nephrology","volume":"20 11","pages":"702-703"},"PeriodicalIF":28.6000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep learning applications in digital pathology\",\"authors\":\"Peter Boor\",\"doi\":\"10.1038/s41581-024-00870-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep Learning (DL) holds great promise to improve patient outcomes by improving the precision and speed of disease diagnosis and treatment recommendations. Given the efficacy of DL in image analysis, pathology will likely be one of the first medical fields transformed by DL. However, several challenges must be overcome before we can expect to see the use of DL transform the digital future of pathology.\",\"PeriodicalId\":19059,\"journal\":{\"name\":\"Nature Reviews Nephrology\",\"volume\":\"20 11\",\"pages\":\"702-703\"},\"PeriodicalIF\":28.6000,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Reviews Nephrology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.nature.com/articles/s41581-024-00870-w\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"UROLOGY & NEPHROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Nephrology","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41581-024-00870-w","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"UROLOGY & NEPHROLOGY","Score":null,"Total":0}
引用次数: 0

摘要

通过提高疾病诊断和治疗建议的精确度和速度,深度学习(DL)有望改善患者的治疗效果。鉴于深度学习在图像分析方面的功效,病理学很可能成为首批被深度学习改造的医学领域之一。然而,在我们期待看到使用 DL 改变病理学的数字化未来之前,必须克服几个挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep learning applications in digital pathology
Deep Learning (DL) holds great promise to improve patient outcomes by improving the precision and speed of disease diagnosis and treatment recommendations. Given the efficacy of DL in image analysis, pathology will likely be one of the first medical fields transformed by DL. However, several challenges must be overcome before we can expect to see the use of DL transform the digital future of pathology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Reviews Nephrology
Nature Reviews Nephrology 医学-泌尿学与肾脏学
CiteScore
39.00
自引率
1.20%
发文量
127
审稿时长
6-12 weeks
期刊介绍: Nature Reviews Nephrology aims to be the premier source of reviews and commentaries for the scientific communities it serves. It strives to publish authoritative, accessible articles. Articles are enhanced with clearly understandable figures, tables, and other display items. Nature Reviews Nephrology publishes Research Highlights, News & Views, Comments, Reviews, Perspectives, and Consensus Statements. The content is relevant to nephrologists and basic science researchers. The broad scope of the journal ensures that the work reaches the widest possible audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信