Nahid Hosseini, Matthias Neuenschwander, Jonathan D. Adams, Santiago H. Andany, Oliver Peric, Marcel Winhold, Maria Carmen Giordano, Vinayak Shantaram Bhat, Marcos Penedo, Dirk Grundler, Georg E. Fantner
{"title":"用于高灵敏度流体兼容微机电系统的聚合物-半导体-陶瓷悬臂","authors":"Nahid Hosseini, Matthias Neuenschwander, Jonathan D. Adams, Santiago H. Andany, Oliver Peric, Marcel Winhold, Maria Carmen Giordano, Vinayak Shantaram Bhat, Marcos Penedo, Dirk Grundler, Georg E. Fantner","doi":"10.1038/s41928-024-01195-z","DOIUrl":null,"url":null,"abstract":"Active microelectromechanical systems (MEMS) with integrated electronic sensing and actuation can provide fast and sensitive measurements of force, acceleration and biological analytes. Strain sensors integrated onto MEMS cantilevers are widely used to transduce an applied force to an electrical signal in applications like atomic force microscopy and molecular detection. However, the high Young’s moduli of traditional MEMS materials, such as silicon or silicon nitride, limit the thickness of the devices and, therefore, the deflection sensitivity that can be obtained for a specific spring constant. Here, we show that polymer materials with a low Young’s modulus can be integrated into polymer–semiconductor–ceramic MEMS cantilevers that are thick and soft. We develop a multi-layer fabrication approach so that high-temperature processes can be used for the deposition and doping of piezoresistive semiconductor strain sensors without damaging the polymer layer. Our trilayer cantilever exhibits a sixfold reduction in force noise compared to a comparable self-sensing silicon cantilever. Furthermore, the strain-sensing electronics in our system are embedded between the polymer and ceramic layers, which makes the technology fluid-compatible. By separating high- and low-temperature fabrication processes, cantilevers that incorporate sensing electronics between a soft polymer core and hard ceramic layers can be made, providing high force sensitivity and robustness to harsh environments.","PeriodicalId":19064,"journal":{"name":"Nature Electronics","volume":"7 7","pages":"567-575"},"PeriodicalIF":33.7000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A polymer–semiconductor–ceramic cantilever for high-sensitivity fluid-compatible microelectromechanical systems\",\"authors\":\"Nahid Hosseini, Matthias Neuenschwander, Jonathan D. Adams, Santiago H. Andany, Oliver Peric, Marcel Winhold, Maria Carmen Giordano, Vinayak Shantaram Bhat, Marcos Penedo, Dirk Grundler, Georg E. Fantner\",\"doi\":\"10.1038/s41928-024-01195-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Active microelectromechanical systems (MEMS) with integrated electronic sensing and actuation can provide fast and sensitive measurements of force, acceleration and biological analytes. Strain sensors integrated onto MEMS cantilevers are widely used to transduce an applied force to an electrical signal in applications like atomic force microscopy and molecular detection. However, the high Young’s moduli of traditional MEMS materials, such as silicon or silicon nitride, limit the thickness of the devices and, therefore, the deflection sensitivity that can be obtained for a specific spring constant. Here, we show that polymer materials with a low Young’s modulus can be integrated into polymer–semiconductor–ceramic MEMS cantilevers that are thick and soft. We develop a multi-layer fabrication approach so that high-temperature processes can be used for the deposition and doping of piezoresistive semiconductor strain sensors without damaging the polymer layer. Our trilayer cantilever exhibits a sixfold reduction in force noise compared to a comparable self-sensing silicon cantilever. Furthermore, the strain-sensing electronics in our system are embedded between the polymer and ceramic layers, which makes the technology fluid-compatible. By separating high- and low-temperature fabrication processes, cantilevers that incorporate sensing electronics between a soft polymer core and hard ceramic layers can be made, providing high force sensitivity and robustness to harsh environments.\",\"PeriodicalId\":19064,\"journal\":{\"name\":\"Nature Electronics\",\"volume\":\"7 7\",\"pages\":\"567-575\"},\"PeriodicalIF\":33.7000,\"publicationDate\":\"2024-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.nature.com/articles/s41928-024-01195-z\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Electronics","FirstCategoryId":"5","ListUrlMain":"https://www.nature.com/articles/s41928-024-01195-z","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
A polymer–semiconductor–ceramic cantilever for high-sensitivity fluid-compatible microelectromechanical systems
Active microelectromechanical systems (MEMS) with integrated electronic sensing and actuation can provide fast and sensitive measurements of force, acceleration and biological analytes. Strain sensors integrated onto MEMS cantilevers are widely used to transduce an applied force to an electrical signal in applications like atomic force microscopy and molecular detection. However, the high Young’s moduli of traditional MEMS materials, such as silicon or silicon nitride, limit the thickness of the devices and, therefore, the deflection sensitivity that can be obtained for a specific spring constant. Here, we show that polymer materials with a low Young’s modulus can be integrated into polymer–semiconductor–ceramic MEMS cantilevers that are thick and soft. We develop a multi-layer fabrication approach so that high-temperature processes can be used for the deposition and doping of piezoresistive semiconductor strain sensors without damaging the polymer layer. Our trilayer cantilever exhibits a sixfold reduction in force noise compared to a comparable self-sensing silicon cantilever. Furthermore, the strain-sensing electronics in our system are embedded between the polymer and ceramic layers, which makes the technology fluid-compatible. By separating high- and low-temperature fabrication processes, cantilevers that incorporate sensing electronics between a soft polymer core and hard ceramic layers can be made, providing high force sensitivity and robustness to harsh environments.
期刊介绍:
Nature Electronics is a comprehensive journal that publishes both fundamental and applied research in the field of electronics. It encompasses a wide range of topics, including the study of new phenomena and devices, the design and construction of electronic circuits, and the practical applications of electronics. In addition, the journal explores the commercial and industrial aspects of electronics research.
The primary focus of Nature Electronics is on the development of technology and its potential impact on society. The journal incorporates the contributions of scientists, engineers, and industry professionals, offering a platform for their research findings. Moreover, Nature Electronics provides insightful commentary, thorough reviews, and analysis of the key issues that shape the field, as well as the technologies that are reshaping society.
Like all journals within the prestigious Nature brand, Nature Electronics upholds the highest standards of quality. It maintains a dedicated team of professional editors and follows a fair and rigorous peer-review process. The journal also ensures impeccable copy-editing and production, enabling swift publication. Additionally, Nature Electronics prides itself on its editorial independence, ensuring unbiased and impartial reporting.
In summary, Nature Electronics is a leading journal that publishes cutting-edge research in electronics. With its multidisciplinary approach and commitment to excellence, the journal serves as a valuable resource for scientists, engineers, and industry professionals seeking to stay at the forefront of advancements in the field.