用于太阳能存储的 Cr2O3 与环保且热稳定的 CsSnCl3 包晶的协同作用:密度泛函理论和 SCAPS-1D 分析

Energy Storage Pub Date : 2024-07-15 DOI:10.1002/est2.70001
Ankur Pandya, Atish Kumar Sharma, Misaree Bhatt, Prafulla K. Jha, Keyur Sangani, Nitesh K. Chourasia, Ritesh Kumar Chourasia
{"title":"用于太阳能存储的 Cr2O3 与环保且热稳定的 CsSnCl3 包晶的协同作用:密度泛函理论和 SCAPS-1D 分析","authors":"Ankur Pandya,&nbsp;Atish Kumar Sharma,&nbsp;Misaree Bhatt,&nbsp;Prafulla K. Jha,&nbsp;Keyur Sangani,&nbsp;Nitesh K. Chourasia,&nbsp;Ritesh Kumar Chourasia","doi":"10.1002/est2.70001","DOIUrl":null,"url":null,"abstract":"<p>The present study employs rigorous DFT analysis using WIEN2k for the best suitability of the Cr<sub>2</sub>O<sub>3</sub> as an electron transport layer, synergetic with nontoxic and thermally stable CsSnCl<sub>3</sub> perovskite solar energy storage device, configured as FTO/Cr<sub>2</sub>O<sub>3</sub>/CsSnCl<sub>3</sub>/CBTS/Au. The main objective of our investigation is to improve the device performance by optimizing thickness, carrier concentration, bulk defect density of each layer, interface defects, operating temperature, as well as the impact of parasitic elements on device performance. SCAPS-1D tool was used to optimize the novel device architecture. The simulation results reveal that a CsSnCl<sub>3</sub> layer with an optimized thickness of 800 nm and a doping concentration of 1 × 10<sup>15</sup> cm<sup>−3</sup> yields noteworthy outcomes, specifically, champion efficiency (𝜂) of 22.01% along with an open-circuit voltage (<i>V</i><sub>oc</sub>) of 1.12 V, a short-circuit current (<i>J</i><sub>sc</sub>) of 23.86 mA/cm<sup>2</sup>, and a fill factor of 81.65%. These improved findings were compared with existing theoretical and experimental reported data and found to exhibit the best performance. The present research substantially enhances the understanding of eco-friendly CsSnCl<sub>3</sub> perovskite solar cell optimization, thereby extending its applicability to future photovoltaic and optoelectronic devices.</p>","PeriodicalId":11765,"journal":{"name":"Energy Storage","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A synergy of Cr2O3 with eco-friendly and thermally stable CsSnCl3 perovskite for solar energy storage: Density functional theory and SCAPS-1D analysis\",\"authors\":\"Ankur Pandya,&nbsp;Atish Kumar Sharma,&nbsp;Misaree Bhatt,&nbsp;Prafulla K. Jha,&nbsp;Keyur Sangani,&nbsp;Nitesh K. Chourasia,&nbsp;Ritesh Kumar Chourasia\",\"doi\":\"10.1002/est2.70001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The present study employs rigorous DFT analysis using WIEN2k for the best suitability of the Cr<sub>2</sub>O<sub>3</sub> as an electron transport layer, synergetic with nontoxic and thermally stable CsSnCl<sub>3</sub> perovskite solar energy storage device, configured as FTO/Cr<sub>2</sub>O<sub>3</sub>/CsSnCl<sub>3</sub>/CBTS/Au. The main objective of our investigation is to improve the device performance by optimizing thickness, carrier concentration, bulk defect density of each layer, interface defects, operating temperature, as well as the impact of parasitic elements on device performance. SCAPS-1D tool was used to optimize the novel device architecture. The simulation results reveal that a CsSnCl<sub>3</sub> layer with an optimized thickness of 800 nm and a doping concentration of 1 × 10<sup>15</sup> cm<sup>−3</sup> yields noteworthy outcomes, specifically, champion efficiency (𝜂) of 22.01% along with an open-circuit voltage (<i>V</i><sub>oc</sub>) of 1.12 V, a short-circuit current (<i>J</i><sub>sc</sub>) of 23.86 mA/cm<sup>2</sup>, and a fill factor of 81.65%. These improved findings were compared with existing theoretical and experimental reported data and found to exhibit the best performance. The present research substantially enhances the understanding of eco-friendly CsSnCl<sub>3</sub> perovskite solar cell optimization, thereby extending its applicability to future photovoltaic and optoelectronic devices.</p>\",\"PeriodicalId\":11765,\"journal\":{\"name\":\"Energy Storage\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Storage\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/est2.70001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/est2.70001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究利用 WIEN2k 进行了严格的 DFT 分析,以确定 Cr2O3 作为电子传输层的最佳适用性,并与无毒、热稳定的 CsSnCl3 包晶太阳能存储设备协同作用,配置为 FTO/Cr2O3/CsSnCl3/CBTS/Au。我们研究的主要目的是通过优化各层的厚度、载流子浓度、块状缺陷密度、界面缺陷、工作温度以及寄生元件对器件性能的影响来提高器件性能。我们使用 SCAPS-1D 工具对新型器件结构进行了优化。模拟结果表明,厚度优化为 800 nm、掺杂浓度为 1 × 1015 cm-3 的 CsSnCl3 层产生了值得注意的结果,具体来说,冠军效率 (𝜂) 为 22.01%,开路电压 (Voc) 为 1.12 V,短路电流 (Jsc) 为 23.86 mA/cm2,填充因子为 81.65%。这些改进结果与现有的理论和实验报告数据进行了比较,发现其表现出最佳性能。本研究大大加深了人们对环保型硒氯化铯包晶太阳能电池优化的理解,从而将其应用于未来的光伏和光电设备。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A synergy of Cr2O3 with eco-friendly and thermally stable CsSnCl3 perovskite for solar energy storage: Density functional theory and SCAPS-1D analysis

The present study employs rigorous DFT analysis using WIEN2k for the best suitability of the Cr2O3 as an electron transport layer, synergetic with nontoxic and thermally stable CsSnCl3 perovskite solar energy storage device, configured as FTO/Cr2O3/CsSnCl3/CBTS/Au. The main objective of our investigation is to improve the device performance by optimizing thickness, carrier concentration, bulk defect density of each layer, interface defects, operating temperature, as well as the impact of parasitic elements on device performance. SCAPS-1D tool was used to optimize the novel device architecture. The simulation results reveal that a CsSnCl3 layer with an optimized thickness of 800 nm and a doping concentration of 1 × 1015 cm−3 yields noteworthy outcomes, specifically, champion efficiency (𝜂) of 22.01% along with an open-circuit voltage (Voc) of 1.12 V, a short-circuit current (Jsc) of 23.86 mA/cm2, and a fill factor of 81.65%. These improved findings were compared with existing theoretical and experimental reported data and found to exhibit the best performance. The present research substantially enhances the understanding of eco-friendly CsSnCl3 perovskite solar cell optimization, thereby extending its applicability to future photovoltaic and optoelectronic devices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信