基于微热阻法估算锂离子电池内部温度的电热耦合模型

IF 4.7 3区 工程技术 Q2 ELECTROCHEMISTRY
Ying Xu , Ying Zhang , Min Zeng , Xingyuan Huang , Zhiqiang Wang
{"title":"基于微热阻法估算锂离子电池内部温度的电热耦合模型","authors":"Ying Xu ,&nbsp;Ying Zhang ,&nbsp;Min Zeng ,&nbsp;Xingyuan Huang ,&nbsp;Zhiqiang Wang","doi":"10.1016/j.elecom.2024.107776","DOIUrl":null,"url":null,"abstract":"<div><p>In the current study, the CN-CD30V10A battery tester, K-type temperature sensor, and RS485 are utilized to perform charging and discharging tests on the Panasonic 21,700 lithium-ion battery at various rates. The voltage and temperature changes are measured in real-time, with the data transmitted to the computer via RS485. Then a micro-thermal resistance method is proposed to calculate the equivalent thermal resistance of the cell core along the axial positive and negative poles, as well as along the radial outer circumference surface under anisotropic conditions. Based on the experimental results and the equivalent thermal resistance, an electrothermal coupling model is established for battery internal temperature estimation, taking into account anisotropy and temperature effects on heat transfer. Through the integration of the model and externally measured temperature, the internal temperature is accurately estimated. Moreover, the proposed model (Root-Mean-Square Error, RMSE=0.329) exhibits a significant improvement in accuracy compared to equivalent circuit model (RMSE=1.08), extended Kalman filter (RMSE=0.95), network extended Kalman filter (RMSE=0.58), and neural network unscented Kalman filter (RMSE=0.61). Specifically, the model achieves an approximately 76 % to 228 % reduction in RMSE compared to these methods.</p></div>","PeriodicalId":304,"journal":{"name":"Electrochemistry Communications","volume":"166 ","pages":"Article 107776"},"PeriodicalIF":4.7000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S138824812400119X/pdfft?md5=ca2c553f55e0b4e070caf9e4050b6a19&pid=1-s2.0-S138824812400119X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"An electrothermal coupling model for estimating the internal temperature of lithium-ion battery based on microthermal resistance method\",\"authors\":\"Ying Xu ,&nbsp;Ying Zhang ,&nbsp;Min Zeng ,&nbsp;Xingyuan Huang ,&nbsp;Zhiqiang Wang\",\"doi\":\"10.1016/j.elecom.2024.107776\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the current study, the CN-CD30V10A battery tester, K-type temperature sensor, and RS485 are utilized to perform charging and discharging tests on the Panasonic 21,700 lithium-ion battery at various rates. The voltage and temperature changes are measured in real-time, with the data transmitted to the computer via RS485. Then a micro-thermal resistance method is proposed to calculate the equivalent thermal resistance of the cell core along the axial positive and negative poles, as well as along the radial outer circumference surface under anisotropic conditions. Based on the experimental results and the equivalent thermal resistance, an electrothermal coupling model is established for battery internal temperature estimation, taking into account anisotropy and temperature effects on heat transfer. Through the integration of the model and externally measured temperature, the internal temperature is accurately estimated. Moreover, the proposed model (Root-Mean-Square Error, RMSE=0.329) exhibits a significant improvement in accuracy compared to equivalent circuit model (RMSE=1.08), extended Kalman filter (RMSE=0.95), network extended Kalman filter (RMSE=0.58), and neural network unscented Kalman filter (RMSE=0.61). Specifically, the model achieves an approximately 76 % to 228 % reduction in RMSE compared to these methods.</p></div>\",\"PeriodicalId\":304,\"journal\":{\"name\":\"Electrochemistry Communications\",\"volume\":\"166 \",\"pages\":\"Article 107776\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S138824812400119X/pdfft?md5=ca2c553f55e0b4e070caf9e4050b6a19&pid=1-s2.0-S138824812400119X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electrochemistry Communications\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S138824812400119X\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochemistry Communications","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S138824812400119X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

摘要

在当前的研究中,利用 CN-CD30V10A 电池测试仪、K 型温度传感器和 RS485,对松下 21,700 锂离子电池进行了不同速率的充电和放电测试。电压和温度变化是实时测量的,数据通过 RS485 传输到计算机。然后提出了一种微热阻方法,用于计算各向异性条件下电池芯沿轴向正负极以及沿径向外圆周表面的等效热阻。根据实验结果和等效热阻,考虑到各向异性和温度对热传导的影响,建立了用于电池内部温度估算的电热耦合模型。通过对模型和外部测量温度进行整合,可以准确估算出内部温度。此外,与等效电路模型(RMSE=1.08)、扩展卡尔曼滤波器(RMSE=0.95)、网络扩展卡尔曼滤波器(RMSE=0.58)和神经网络非特征卡尔曼滤波器(RMSE=0.61)相比,所提出的模型(均方根误差,RMSE=0.329)在精度上有显著提高。具体来说,与这些方法相比,该模型的 RMSE 降低了约 76% 至 228%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An electrothermal coupling model for estimating the internal temperature of lithium-ion battery based on microthermal resistance method

In the current study, the CN-CD30V10A battery tester, K-type temperature sensor, and RS485 are utilized to perform charging and discharging tests on the Panasonic 21,700 lithium-ion battery at various rates. The voltage and temperature changes are measured in real-time, with the data transmitted to the computer via RS485. Then a micro-thermal resistance method is proposed to calculate the equivalent thermal resistance of the cell core along the axial positive and negative poles, as well as along the radial outer circumference surface under anisotropic conditions. Based on the experimental results and the equivalent thermal resistance, an electrothermal coupling model is established for battery internal temperature estimation, taking into account anisotropy and temperature effects on heat transfer. Through the integration of the model and externally measured temperature, the internal temperature is accurately estimated. Moreover, the proposed model (Root-Mean-Square Error, RMSE=0.329) exhibits a significant improvement in accuracy compared to equivalent circuit model (RMSE=1.08), extended Kalman filter (RMSE=0.95), network extended Kalman filter (RMSE=0.58), and neural network unscented Kalman filter (RMSE=0.61). Specifically, the model achieves an approximately 76 % to 228 % reduction in RMSE compared to these methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electrochemistry Communications
Electrochemistry Communications 工程技术-电化学
CiteScore
8.50
自引率
3.70%
发文量
160
审稿时长
1.2 months
期刊介绍: Electrochemistry Communications is an open access journal providing fast dissemination of short communications, full communications and mini reviews covering the whole field of electrochemistry which merit urgent publication. Short communications are limited to a maximum of 20,000 characters (including spaces) while full communications and mini reviews are limited to 25,000 characters (including spaces). Supplementary information is permitted for full communications and mini reviews but not for short communications. We aim to be the fastest journal in electrochemistry for these types of papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信