{"title":"利用 OpenFOAM 经验闭包对高压过冷沸腾流进行 CFD 分析,以了解制冷剂属性变化的影响","authors":"Baramee Muangput , Thet Zin , Sirawit Namchanthra , Jetsadaporn Priyadumkol , Tinnapob Phengpom , Watcharapong Chookaew , Chakrit Suvanjumrat , Machimontorn Promtong","doi":"10.1016/j.apples.2024.100187","DOIUrl":null,"url":null,"abstract":"<div><p>Boiling flow presents a significant concern, especially when a liquid surpasses its boiling point, potentially leading to catastrophic consequences. This research utilizes a two-phase code in the OpenFOAM software to investigate bubble formation during flow boiling. The well-established empirical models for calculating wall heat components were selected based on the operating conditions. The study incorporates experimental data from high-pressure boiling flow (10–30 bars) with variable properties of refrigerant R-12. The predictions reveal underpredictions in void fraction and liquid temperature compared to experimental observations. Significantly, the impact of the subcooling degree on void fraction behaviour is emphasized, and a potential underprediction of the evaporation portion is highlighted, particularly near the wall. Challenges in modelling bubble size distribution are evident through discrepancies in bubble diameter and velocity data, indicating the necessity for further advancements in the code. In summary, this numerical study provides valuable insights into the intricate dynamics of high-pressure subcooled boiling flow, especially when considering variable working fluid properties. Future efforts will focus on refining models for nucleation site density, bubble departure size, and lift-off frequency to enhance prediction accuracy.</p></div>","PeriodicalId":72251,"journal":{"name":"Applications in engineering science","volume":"19 ","pages":"Article 100187"},"PeriodicalIF":2.2000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266649682400013X/pdfft?md5=f9ba3d42efdea27c11f0dac108e088a9&pid=1-s2.0-S266649682400013X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"CFD elucidation of high-pressure subcooled boiling flow towards effects of variable refrigerantproperties using OpenFOAM empirical closures\",\"authors\":\"Baramee Muangput , Thet Zin , Sirawit Namchanthra , Jetsadaporn Priyadumkol , Tinnapob Phengpom , Watcharapong Chookaew , Chakrit Suvanjumrat , Machimontorn Promtong\",\"doi\":\"10.1016/j.apples.2024.100187\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Boiling flow presents a significant concern, especially when a liquid surpasses its boiling point, potentially leading to catastrophic consequences. This research utilizes a two-phase code in the OpenFOAM software to investigate bubble formation during flow boiling. The well-established empirical models for calculating wall heat components were selected based on the operating conditions. The study incorporates experimental data from high-pressure boiling flow (10–30 bars) with variable properties of refrigerant R-12. The predictions reveal underpredictions in void fraction and liquid temperature compared to experimental observations. Significantly, the impact of the subcooling degree on void fraction behaviour is emphasized, and a potential underprediction of the evaporation portion is highlighted, particularly near the wall. Challenges in modelling bubble size distribution are evident through discrepancies in bubble diameter and velocity data, indicating the necessity for further advancements in the code. In summary, this numerical study provides valuable insights into the intricate dynamics of high-pressure subcooled boiling flow, especially when considering variable working fluid properties. Future efforts will focus on refining models for nucleation site density, bubble departure size, and lift-off frequency to enhance prediction accuracy.</p></div>\",\"PeriodicalId\":72251,\"journal\":{\"name\":\"Applications in engineering science\",\"volume\":\"19 \",\"pages\":\"Article 100187\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S266649682400013X/pdfft?md5=f9ba3d42efdea27c11f0dac108e088a9&pid=1-s2.0-S266649682400013X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applications in engineering science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S266649682400013X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applications in engineering science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266649682400013X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
CFD elucidation of high-pressure subcooled boiling flow towards effects of variable refrigerantproperties using OpenFOAM empirical closures
Boiling flow presents a significant concern, especially when a liquid surpasses its boiling point, potentially leading to catastrophic consequences. This research utilizes a two-phase code in the OpenFOAM software to investigate bubble formation during flow boiling. The well-established empirical models for calculating wall heat components were selected based on the operating conditions. The study incorporates experimental data from high-pressure boiling flow (10–30 bars) with variable properties of refrigerant R-12. The predictions reveal underpredictions in void fraction and liquid temperature compared to experimental observations. Significantly, the impact of the subcooling degree on void fraction behaviour is emphasized, and a potential underprediction of the evaporation portion is highlighted, particularly near the wall. Challenges in modelling bubble size distribution are evident through discrepancies in bubble diameter and velocity data, indicating the necessity for further advancements in the code. In summary, this numerical study provides valuable insights into the intricate dynamics of high-pressure subcooled boiling flow, especially when considering variable working fluid properties. Future efforts will focus on refining models for nucleation site density, bubble departure size, and lift-off frequency to enhance prediction accuracy.