Lucile Beck , Matej Mayer , Tiago F. Silva , Claire Berthier , Laurent Pichon
{"title":"结合 PIXE 和 EBS 分析涂料层:实验和模拟凸显颜料粒度的影响","authors":"Lucile Beck , Matej Mayer , Tiago F. Silva , Claire Berthier , Laurent Pichon","doi":"10.1016/j.nimb.2024.165468","DOIUrl":null,"url":null,"abstract":"<div><p>PIXE and EBS were used simultaneously to characterize paint layers containing pigments of controlled grain size. The experiments were carried out using the external 3 MeV proton beam from the NewAGLAE facility. The paint layers consisted of lead silicate pigments mixed in linseed oil. The pigments were characterized by XRD and SEM prior to IBA measurements. Irregularly shaped grains ranging from 13 to 64 µm were observed.</p><p>The PIXE spectra were fitted by TRAUPIXE and the EBS spectra were simulated with STRUCTNRA using simplified models of the paint structure assuming non-overlapping spherical pigment particles in oil. For each simulation, the particle size was used as provided by the SEM observations. The density of each paint layer was calculated according to the pigment composition determined by PIXE. For the linseed oil matrix, the oxygen content was fitted at about two times higher than in linseed oil, which is qualitatively consistent with the oxygen uptake during the drying process. The pigment volume fraction and the stick-out fraction were adjusted to fit the experimental spectra. A reasonable agreement between experimental and simulated spectra was achieved. This demonstrates that the simulation and quantitative understanding of EBS spectra from paintings requires the microstructure of the paint layer to be taken into account.</p></div>","PeriodicalId":19380,"journal":{"name":"Nuclear Instruments & Methods in Physics Research Section B-beam Interactions With Materials and Atoms","volume":"555 ","pages":"Article 165468"},"PeriodicalIF":1.4000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combining PIXE and EBS for the analysis of paint layers: Experiment and simulation highlight the influence of the pigment grain size\",\"authors\":\"Lucile Beck , Matej Mayer , Tiago F. Silva , Claire Berthier , Laurent Pichon\",\"doi\":\"10.1016/j.nimb.2024.165468\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>PIXE and EBS were used simultaneously to characterize paint layers containing pigments of controlled grain size. The experiments were carried out using the external 3 MeV proton beam from the NewAGLAE facility. The paint layers consisted of lead silicate pigments mixed in linseed oil. The pigments were characterized by XRD and SEM prior to IBA measurements. Irregularly shaped grains ranging from 13 to 64 µm were observed.</p><p>The PIXE spectra were fitted by TRAUPIXE and the EBS spectra were simulated with STRUCTNRA using simplified models of the paint structure assuming non-overlapping spherical pigment particles in oil. For each simulation, the particle size was used as provided by the SEM observations. The density of each paint layer was calculated according to the pigment composition determined by PIXE. For the linseed oil matrix, the oxygen content was fitted at about two times higher than in linseed oil, which is qualitatively consistent with the oxygen uptake during the drying process. The pigment volume fraction and the stick-out fraction were adjusted to fit the experimental spectra. A reasonable agreement between experimental and simulated spectra was achieved. This demonstrates that the simulation and quantitative understanding of EBS spectra from paintings requires the microstructure of the paint layer to be taken into account.</p></div>\",\"PeriodicalId\":19380,\"journal\":{\"name\":\"Nuclear Instruments & Methods in Physics Research Section B-beam Interactions With Materials and Atoms\",\"volume\":\"555 \",\"pages\":\"Article 165468\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear Instruments & Methods in Physics Research Section B-beam Interactions With Materials and Atoms\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168583X24002386\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Instruments & Methods in Physics Research Section B-beam Interactions With Materials and Atoms","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168583X24002386","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0
摘要
PIXE 和 EBS 同时用于表征含有可控粒度颜料的涂料层。实验使用了来自 NewAGLAE 设施的 3 MeV 外部质子束。涂料层由混合在亚麻籽油中的硅酸铅颜料组成。在进行 IBA 测量之前,对颜料进行了 XRD 和 SEM 表征。PIXE 光谱由 TRAUPIXE 拟合,EBS 光谱由 STRUCTNRA 模拟,使用的是假设油中无重叠球形颜料颗粒的简化油漆结构模型。每次模拟都使用 SEM 观察到的颗粒大小。每层涂料的密度都是根据 PIXE 确定的颜料成分计算得出的。对于亚麻籽油基体,氧含量的拟合值约为亚麻籽油中氧含量的两倍,这与干燥过程中的氧气吸收情况基本一致。对颜料体积分数和粘出分数进行了调整,以拟合实验光谱。实验光谱与模拟光谱之间达到了合理的一致。这表明,要模拟和定量理解绘画作品的 EBS 光谱,就必须考虑油漆层的微观结构。
Combining PIXE and EBS for the analysis of paint layers: Experiment and simulation highlight the influence of the pigment grain size
PIXE and EBS were used simultaneously to characterize paint layers containing pigments of controlled grain size. The experiments were carried out using the external 3 MeV proton beam from the NewAGLAE facility. The paint layers consisted of lead silicate pigments mixed in linseed oil. The pigments were characterized by XRD and SEM prior to IBA measurements. Irregularly shaped grains ranging from 13 to 64 µm were observed.
The PIXE spectra were fitted by TRAUPIXE and the EBS spectra were simulated with STRUCTNRA using simplified models of the paint structure assuming non-overlapping spherical pigment particles in oil. For each simulation, the particle size was used as provided by the SEM observations. The density of each paint layer was calculated according to the pigment composition determined by PIXE. For the linseed oil matrix, the oxygen content was fitted at about two times higher than in linseed oil, which is qualitatively consistent with the oxygen uptake during the drying process. The pigment volume fraction and the stick-out fraction were adjusted to fit the experimental spectra. A reasonable agreement between experimental and simulated spectra was achieved. This demonstrates that the simulation and quantitative understanding of EBS spectra from paintings requires the microstructure of the paint layer to be taken into account.
期刊介绍:
Section B of Nuclear Instruments and Methods in Physics Research covers all aspects of the interaction of energetic beams with atoms, molecules and aggregate forms of matter. This includes ion beam analysis and ion beam modification of materials as well as basic data of importance for these studies. Topics of general interest include: atomic collisions in solids, particle channelling, all aspects of collision cascades, the modification of materials by energetic beams, ion implantation, irradiation - induced changes in materials, the physics and chemistry of beam interactions and the analysis of materials by all forms of energetic radiation. Modification by ion, laser and electron beams for the study of electronic materials, metals, ceramics, insulators, polymers and other important and new materials systems are included. Related studies, such as the application of ion beam analysis to biological, archaeological and geological samples as well as applications to solve problems in planetary science are also welcome. Energetic beams of interest include atomic and molecular ions, neutrons, positrons and muons, plasmas directed at surfaces, electron and photon beams, including laser treated surfaces and studies of solids by photon radiation from rotating anodes, synchrotrons, etc. In addition, the interaction between various forms of radiation and radiation-induced deposition processes are relevant.