Zijian Gao , Kele Xu , Huiping Zhuang , Li Liu , Xinjun Mao , Bo Ding , Dawei Feng , Huaimin Wang
{"title":"更少的自信,更少的遗忘:在无范例班级强化学习中与谦虚的教师一起学习","authors":"Zijian Gao , Kele Xu , Huiping Zhuang , Li Liu , Xinjun Mao , Bo Ding , Dawei Feng , Huaimin Wang","doi":"10.1016/j.neunet.2024.106513","DOIUrl":null,"url":null,"abstract":"<div><p>Class-Incremental learning (CIL) is challenging due to catastrophic forgetting (CF), which escalates in exemplar-free scenarios. To mitigate CF, Knowledge Distillation (KD), which leverages old models as teacher models, has been widely employed in CIL. However, based on a case study, our investigation reveals that the teacher model exhibits over-confidence in unseen new samples. In this article, we conduct empirical experiments and provide theoretical analysis to investigate the over-confident phenomenon and the impact of KD in exemplar-free CIL, where access to old samples is unavailable. Building on our analysis, we propose a novel approach, Learning with Humbler Teacher, by systematically selecting an appropriate checkpoint model as a humbler teacher to mitigate CF. Furthermore, we explore utilizing the nuclear norm to obtain an appropriate temporal ensemble to enhance model stability. Notably, LwHT outperforms the state-of-the-art approach by a significant margin of 10.41%, 6.56%, and 4.31% in various settings while demonstrating superior model plasticity.</p></div>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"179 ","pages":"Article 106513"},"PeriodicalIF":6.3000,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Less confidence, less forgetting: Learning with a humbler teacher in exemplar-free Class-Incremental learning\",\"authors\":\"Zijian Gao , Kele Xu , Huiping Zhuang , Li Liu , Xinjun Mao , Bo Ding , Dawei Feng , Huaimin Wang\",\"doi\":\"10.1016/j.neunet.2024.106513\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Class-Incremental learning (CIL) is challenging due to catastrophic forgetting (CF), which escalates in exemplar-free scenarios. To mitigate CF, Knowledge Distillation (KD), which leverages old models as teacher models, has been widely employed in CIL. However, based on a case study, our investigation reveals that the teacher model exhibits over-confidence in unseen new samples. In this article, we conduct empirical experiments and provide theoretical analysis to investigate the over-confident phenomenon and the impact of KD in exemplar-free CIL, where access to old samples is unavailable. Building on our analysis, we propose a novel approach, Learning with Humbler Teacher, by systematically selecting an appropriate checkpoint model as a humbler teacher to mitigate CF. Furthermore, we explore utilizing the nuclear norm to obtain an appropriate temporal ensemble to enhance model stability. Notably, LwHT outperforms the state-of-the-art approach by a significant margin of 10.41%, 6.56%, and 4.31% in various settings while demonstrating superior model plasticity.</p></div>\",\"PeriodicalId\":49763,\"journal\":{\"name\":\"Neural Networks\",\"volume\":\"179 \",\"pages\":\"Article 106513\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0893608024004374\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893608024004374","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Less confidence, less forgetting: Learning with a humbler teacher in exemplar-free Class-Incremental learning
Class-Incremental learning (CIL) is challenging due to catastrophic forgetting (CF), which escalates in exemplar-free scenarios. To mitigate CF, Knowledge Distillation (KD), which leverages old models as teacher models, has been widely employed in CIL. However, based on a case study, our investigation reveals that the teacher model exhibits over-confidence in unseen new samples. In this article, we conduct empirical experiments and provide theoretical analysis to investigate the over-confident phenomenon and the impact of KD in exemplar-free CIL, where access to old samples is unavailable. Building on our analysis, we propose a novel approach, Learning with Humbler Teacher, by systematically selecting an appropriate checkpoint model as a humbler teacher to mitigate CF. Furthermore, we explore utilizing the nuclear norm to obtain an appropriate temporal ensemble to enhance model stability. Notably, LwHT outperforms the state-of-the-art approach by a significant margin of 10.41%, 6.56%, and 4.31% in various settings while demonstrating superior model plasticity.
期刊介绍:
Neural Networks is a platform that aims to foster an international community of scholars and practitioners interested in neural networks, deep learning, and other approaches to artificial intelligence and machine learning. Our journal invites submissions covering various aspects of neural networks research, from computational neuroscience and cognitive modeling to mathematical analyses and engineering applications. By providing a forum for interdisciplinary discussions between biology and technology, we aim to encourage the development of biologically-inspired artificial intelligence.