{"title":"离散哈代不等式的改进","authors":"Prasun Roychowdhury , Durvudkhan Suragan","doi":"10.1016/j.bulsci.2024.103468","DOIUrl":null,"url":null,"abstract":"<div><p>We establish a novel improvement of the classical discrete Hardy inequality, which gives the discrete version of a recent (continuous) inequality of Frank, Laptev, and Weidl. Our arguments build on certain weighted inequalities based on discrete analogues of symmetric decreasing rearrangement techniques.</p></div>","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"195 ","pages":"Article 103468"},"PeriodicalIF":1.3000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improvement of the discrete Hardy inequality\",\"authors\":\"Prasun Roychowdhury , Durvudkhan Suragan\",\"doi\":\"10.1016/j.bulsci.2024.103468\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We establish a novel improvement of the classical discrete Hardy inequality, which gives the discrete version of a recent (continuous) inequality of Frank, Laptev, and Weidl. Our arguments build on certain weighted inequalities based on discrete analogues of symmetric decreasing rearrangement techniques.</p></div>\",\"PeriodicalId\":55313,\"journal\":{\"name\":\"Bulletin des Sciences Mathematiques\",\"volume\":\"195 \",\"pages\":\"Article 103468\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin des Sciences Mathematiques\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0007449724000861\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin des Sciences Mathematiques","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0007449724000861","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
We establish a novel improvement of the classical discrete Hardy inequality, which gives the discrete version of a recent (continuous) inequality of Frank, Laptev, and Weidl. Our arguments build on certain weighted inequalities based on discrete analogues of symmetric decreasing rearrangement techniques.